Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nociceptive sensory neurons derive from contralaterally migrating, fate-restricted neural crest cells

Abstract

Neural crest cells (NCCs) are a transient population of multipotent progenitors that give rise to numerous cell types in the embryo. An unresolved issue is the degree to which the fate of NCCs is specified prior to their emigration from the neural tube. In chick embryos, we identified a subpopulation of NCCs that, upon delamination, crossed the dorsal midline to colonize spatially discrete regions of the contralateral dorsal root ganglia (DRG), where they later gave rise to nearly half of the nociceptor sensory neuron population. Our data indicate that before emigration, this NCC subset is phenotypically distinct, with an intrinsic lineage potential that differs from its temporally synchronized, but ipsilaterally migrating, cohort. These findings not only identify a major source of progenitor cells for the pain- and temperature-sensing afferents, but also reveal a previously unknown migratory pathway for sensory-fated NCCs that requires the capacity to cross the embryonic midline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NCCs colonize discrete regions of the contralateral DRG.
Figure 2: Late-wave NCCs cross the dorsal midline and localize to discrete regions of the contralateral DRG.
Figure 3: Late-wave NCCs comprise two subsets.
Figure 4: Contralaterally migrating, late-wave NCCs give rise to nociceptive neurons.
Figure 5: Neural tube and DRG morphology in trunk neural tube–separated embryos.

Similar content being viewed by others

References

  1. LeDouarin, N.M. & Kalcheim, C. The Neural Crest (eds. Bard, J., Barlow, P. & Kirk, D.) (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  2. Erickson, C.A., Duong, T.D. & Tosney, K.W. Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev. Biol. 151, 251–272 (1992).

    Article  CAS  Google Scholar 

  3. Loring, J.F. & Erickson, C.A. Neural crest cell migratory pathways in the trunk of the chick embryo. Dev. Biol. 121, 220–236 (1987).

    Article  CAS  Google Scholar 

  4. Serbedzija, G.N., Bronner-Fraser, M. & Fraser, S.E. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106, 809–816 (1989).

    CAS  PubMed  Google Scholar 

  5. Serbedzija, G.N., Fraser, S.E. & Bronner-Fraser, M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108, 605–612 (1990).

    CAS  PubMed  Google Scholar 

  6. Tosney, K.W. The early migration of neural crest cells in the trunk region of the avian embryo: an electron microscopic study. Dev. Biol. 62, 317–333 (1978).

    Article  CAS  Google Scholar 

  7. Weston, J.A. A radioautographic analysis of the migration and localization of trunk neural crest cells in the chick. Dev. Biol. 6, 279–310 (1963).

    Article  CAS  Google Scholar 

  8. Scott, S.A. Sensory. Neurons: Development, Diversity, and Plasticity (Oxford University Press, New York/London, 1992).

    Google Scholar 

  9. Snider, W.D. & Silos-Santiago, I. Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development. Phil. Trans. R. Soc. Lond. B 351, 395–403 (1996).

    Article  CAS  Google Scholar 

  10. Marmigere, F. & Ernfors, P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat. Rev. Neurosci. 8, 114–127 (2007).

    Article  CAS  Google Scholar 

  11. Wakamatsu, Y., Maynard, T.M. & Weston, J.A. Fate determination of neural crest cells by NOTCH-mediated lateral inhibition and asymmetrical cell division during gangliogenesis. Development 127, 2811–2821 (2000).

    CAS  PubMed  Google Scholar 

  12. Rifkin, J.T., Todd, V.J., Anderson, L.W. & Lefcort, F. Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Dev. Biol. 227, 465–480 (2000).

    Article  CAS  Google Scholar 

  13. Carr, V.M. & Simpson, S.B., Jr. Proliferative and degenerative events in the early development of chick dorsal root ganglia. II. Responses to altered peripheral fields. J. Comp. Neurol. 182, 741–755 (1978).

    Article  CAS  Google Scholar 

  14. Maro, G.S. et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat. Neurosci. 7, 930–938 (2004).

    Article  CAS  Google Scholar 

  15. Ma, Q., Fode, C., Guillemot, F. & Anderson, D.J. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13, 1717–1728 (1999).

    Article  CAS  Google Scholar 

  16. Hari, L. et al. Lineage-specific requirements of beta-catenin in neural crest development. J. Cell Biol. 159, 867–880 (2002).

    Article  CAS  Google Scholar 

  17. Lee, H.Y. et al. Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303, 1020–1023 (2004).

    Article  CAS  Google Scholar 

  18. Marmigere, F. et al. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat. Neurosci. 9, 180–187 (2006).

    Article  CAS  Google Scholar 

  19. Kramer, I. et al. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393 (2006).

    Article  CAS  Google Scholar 

  20. Chen, C.L. et al. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49, 365–377 (2006).

    Article  CAS  Google Scholar 

  21. Levanon, D. et al. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21, 3454–3463 (2002).

    Article  CAS  Google Scholar 

  22. Hamburger, V. & Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  23. Swartz, M., Eberhart, J., Mastick, G.S. & Krull, C.E. Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev. Biol. 233, 13–21 (2001).

    Article  CAS  Google Scholar 

  24. Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380 (1997).

    Article  CAS  Google Scholar 

  25. Nelson, B.R., Matsuhashi, S. & Lefcort, F. Restricted neural epidermal growth factor–like like 2 (NELL2) expression during muscle and neuronal differentiation. Mech. Dev. 119 Suppl 1, S11–S19 (2002).

    Article  Google Scholar 

  26. Montelius, A. et al. Emergence of the sensory nervous system as defined by Foxs1 expression. Differentiation 75, 404–417 (2007).

    Article  CAS  Google Scholar 

  27. Couly, G., Grapin-Botton, A., Coltey, P. & Le Douarin, N.M. The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development 122, 3393–3407 (1996).

    CAS  PubMed  Google Scholar 

  28. Teillet, M.A. Recherches sur le mode de migration et la differenciation des melanoblastes cutanes chez l'embryon d'oiseau: etude experimentale par la methode des greffes heterospecifiques entre embryons de caille et de Poulet. Ann. Embryol. Mor. 4, 95–109 (1978).

    Google Scholar 

  29. Lo, L., Dormand, E.L. & Anderson, D.J. Late-emigrating neural crest cells in the roof plate are restricted to a sensory fate by GDF7. Proc. Natl. Acad. Sci. USA 102, 7192–7197 (2005).

    Article  CAS  Google Scholar 

  30. Lallier, T.E. & Bronner-Fraser, M. A spatial and temporal analysis of dorsal root and sympathetic ganglion formation in the avian embryo. Dev. Biol. 127, 99–112 (1988).

    Article  CAS  Google Scholar 

  31. Teddy, J.M., Lansford, R. & Kulesa, P.M. Four-color, 4-D time-lapse confocal imaging of chick embryos. Biotechniques 39, 703–710 (2005).

    Article  CAS  Google Scholar 

  32. Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E. & McConnell, S.K. Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406 (1999).

    Article  CAS  Google Scholar 

  33. Wegner, M. & Stolt, C.C. From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28, 583–588 (2005).

    Article  CAS  Google Scholar 

  34. Bhattacharyya, A., Frank, E., Ratner, N. & Brackenbury, R. P0 is an early marker of the Schwann cell lineage in chickens. Neuron 7, 831–844 (1991).

    Article  CAS  Google Scholar 

  35. Pannese, E. The histogenesis of the spinal ganglia. Adv. Anat. Embryol. Cell Biol. 47, 7–97 (1974).

    CAS  PubMed  Google Scholar 

  36. Bronner-Fraser, M. & Fraser, S. Developmental potential of avian trunk neural crest cells in situ. Neuron 3, 755–766 (1989).

    Article  CAS  Google Scholar 

  37. Frank, E. & Sanes, J.R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111, 895–908 (1991).

    CAS  PubMed  Google Scholar 

  38. Zirlinger, M., Lo, L., McMahon, J., McMahon, A.P. & Anderson, D.J. Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc. Natl. Acad. Sci. USA 99, 8084–8089 (2002).

    Article  CAS  Google Scholar 

  39. Gowan, K. et al. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31, 219–232 (2001).

    Article  CAS  Google Scholar 

  40. Perez, S.E., Rebelo, S. & Anderson, D.J. Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126, 1715–1728 (1999).

    CAS  PubMed  Google Scholar 

  41. Ma, Q., Sommer, L., Cserjesi, P. & Anderson, D.J. Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. J. Neurosci. 17, 3644–3652 (1997).

    Article  CAS  Google Scholar 

  42. Lawson, S.N. & Biscoe, T.J. Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J. Neurocytol. 8, 265–274 (1979).

    Article  CAS  Google Scholar 

  43. Farinas, I., Yoshida, C.K., Backus, C. & Reichardt, L.F. Lack of neurotrophin-3 results in death of spinal sensory neurons and premature differentiation of their precursors. Neuron 17, 1065–1078 (1996).

    Article  CAS  Google Scholar 

  44. Farinas, I., Wilkinson, G.A., Backus, C., Reichardt, L.F. & Patapoutian, A. Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Neuron 21, 325–334 (1998).

    Article  CAS  Google Scholar 

  45. Henion, P.D. & Weston, J.A. Timing and pattern of cell fate restrictions in the neural crest lineage. Development 124, 4351–4359 (1997).

    CAS  PubMed  Google Scholar 

  46. Raible, D.W. & Ragland, J.W. Reiterated Wnt and BMP signals in neural crest development. Semin. Cell Dev. Biol. 16, 673–682 (2005).

    Article  CAS  Google Scholar 

  47. Cayouette, M., Poggi, L. & Harris, W.A. Lineage in the vertebrate retina. Trends Neurosci. 29, 563–570 (2006).

    Article  CAS  Google Scholar 

  48. Dupin, E., Creuzet, S. & Le Douarin, N.M. The contribution of the neural crest to the vertebrate body. Adv. Exp. Med. Biol. 589, 96–119 (2006).

    Article  CAS  Google Scholar 

  49. Schweizer, G., Ayer-Le Lievre, C. & Le Douarin, N.M. Restrictions of developmental capacities in the dorsal root ganglia during the course of development. Cell Differ. 13, 191–200 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Wegner for his kind gift of the Sox10 antibody, R. Bradley for providing us with the CS2-Myc plasmid and P. Kulesa for critical reading of the manuscript. This work was supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke R01 35714. (F.L.) and NRSA 7055571 (L.G.).

Author information

Authors and Affiliations

Authors

Contributions

L.G. conducted all experiments, imaging and data analyses. L.G. and F.L. supervised the project and wrote the manuscript. M.C. and V.T. assisted with injections, cryosectioning and immunocytochemistry. R.L. constructed the GFP retrovirus and edited the manuscript.

Corresponding author

Correspondence to Frances Lefcort.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Tables 1–3 (PDF 973 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, L., Chaverra, M., Todd, V. et al. Nociceptive sensory neurons derive from contralaterally migrating, fate-restricted neural crest cells. Nat Neurosci 10, 1287–1293 (2007). https://doi.org/10.1038/nn1962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing