Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical

Abstract

Upon exocytosis, synaptic vesicle proteins are released into the plasma membrane and have to be retrieved by compensatory endocytosis. When green fluorescent protein–labeled versions of the vesicle proteins synaptobrevin-2 and synaptotagmin-1 are overexpressed in rat hippocampal neurons, up to 30% are found on axonal membranes under resting conditions. To test whether and to what extent these plasma membrane–stranded proteins participate in exo-endocytic cycling, a new proteolytic approach was used to visualize the fate of newly exocytosed proteins separately from that of the plasma membrane–stranded ones. We found that both pools were mixed and that endocytosed vesicles were largely composed of previously stranded molecules. The degree of nonidentity of vesicular proteins exo- and endocytosed depended on stimulus duration. By using an antibody to the external domain of synaptotagmin-1, we estimated that under physiological conditions a few percent of vesicular proteins were located near the active zone, from where they were preferentially recycled upon stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptobrevin-TEV-pHluorin (spH-TEV) is targeted to functional boutons and the plasma membrane–stranded fraction can be effectively cleaved.
Figure 2: Vesicular proteins are lost after fusion.
Figure 3: Vesicular proteins exo- and endocytosed during stimulation are not identical.
Figure 4: Nonidentity is also observed after photobleaching.
Figure 5: Nonidentity is also observed for synaptotagmin-1-TEV-pHluorin.
Figure 6: Stranded pool size is under modulatory control and is about 10% of total pool size under native conditions.
Figure 7: Stranded synaptic vesicle proteins are preferentially recycled.

Similar content being viewed by others

References

  1. Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  Google Scholar 

  2. Cremona, O. & De Camilli, P. Synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 7, 323–330 (1997).

    Article  CAS  Google Scholar 

  3. Brodin, L., Low, P. & Shupliakov, O. Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 10, 312–320 (2000).

    Article  CAS  Google Scholar 

  4. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. & Wakeham, D.E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  Google Scholar 

  5. Ceccarelli, B., Hurlbut, W.P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    Article  CAS  Google Scholar 

  6. Koenig, J.H., Yamaoka, K. & Ikeda, K. Omega images at the active zone may be endocytotic rather than exocytotic: implications for the vesicle hypothesis of transmitter release. Proc. Natl. Acad. Sci. USA 95, 12677–12682 (1998).

    Article  CAS  Google Scholar 

  7. Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003).

    Article  CAS  Google Scholar 

  8. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  Google Scholar 

  9. Takei, K., Mundigl, O., Daniell, L. & De Camilli, P. The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J. Cell Biol. 133, 1237–1250 (1996).

    Article  CAS  Google Scholar 

  10. Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  Google Scholar 

  11. Ryan, T.A., Smith, S.J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 93, 5567–5571 (1996).

    Article  CAS  Google Scholar 

  12. Wu, L.G. & Betz, W.J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 769–779 (1996).

    Article  CAS  Google Scholar 

  13. Klingauf, J., Kavalali, E.T. & Tsien, R.W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998).

    Article  CAS  Google Scholar 

  14. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  Google Scholar 

  15. Sankaranarayanan, S. & Ryan, T.A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    Article  CAS  Google Scholar 

  16. Mueller, V.J., Wienisch, M., Nehring, R.B. & Klingauf, J. Monitoring clathrin-mediated endocytosis during synaptic activity. J. Neurosci. 24, 2004–2012 (2004).

    Article  CAS  Google Scholar 

  17. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  18. Loerke, D., Wienisch, M., Kochubey, O. & Klingauf, J. Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy. Traffic 6, 918–929 (2005).

    Article  CAS  Google Scholar 

  19. Miller, T.M. & Heuser, J.E. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J. Cell Biol. 98, 685–698 (1984).

    Article  CAS  Google Scholar 

  20. Sankaranarayanan, S., De Angelis, D., Rothman, J.E. & Ryan, T.A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).

    Article  CAS  Google Scholar 

  21. Taubenblatt, P., Dedieu, J.C., Gulik-Krzywicki, T. & Morel, N. VAMP (synaptobrevin) is present in the plasma membrane of nerve terminals. J. Cell Sci. 112, 3559–3567 (1999).

    CAS  PubMed  Google Scholar 

  22. Li, Z. & Murthy, V.N. Visualizing postendocytic traffic of synaptic vesicles at hippocampal synapses. Neuron 31, 593–605 (2001).

    Article  CAS  Google Scholar 

  23. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  24. Atluri, P.P. & Ryan, T.A. The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J. Neurosci. 26, 2313–2320 (2006).

    Article  CAS  Google Scholar 

  25. Thiele, C., Hannah, M.J., Fahrenholz, F. & Huttner, W.B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49 (2000).

    Article  CAS  Google Scholar 

  26. Calakos, N. & Scheller, R.H. Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J. Biol. Chem. 269, 24534–24537 (1994).

    CAS  PubMed  Google Scholar 

  27. Pennuto, M., Bonanomi, D., Benfenati, F. & Valtorta, F. Synaptophysin I controls the targeting of VAMP2/synaptobrevin II to synaptic vesicles. Mol. Biol. Cell 14, 4909–4919 (2003).

    Article  CAS  Google Scholar 

  28. Kaether, C., Skehel, P. & Dotti, C.G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000).

    Article  CAS  Google Scholar 

  29. Diril, M.K., Wienisch, M., Jung, N., Klingauf, J. & Haucke, V. Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev. Cell 10, 233–244 (2006).

    Article  CAS  Google Scholar 

  30. Matteoli, M., Takei, K., Perin, M.S., Sudhof, T.C. & De Camilli, P. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J. Cell Biol. 117, 849–861 (1992).

    Article  CAS  Google Scholar 

  31. Vanden Berghe, P. & Klingauf, J. Synaptic vesicles in hippocampal boutons recycle to different pools in a use-dependent fashion. J. Physiol. 572, 707–720 (2006).

    Article  CAS  Google Scholar 

  32. Fernandez-Alfonso, T. & Ryan, T.A. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron 41, 943–953 (2004).

    Article  CAS  Google Scholar 

  33. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  Google Scholar 

  34. Sampo, B., Kaech, S., Kunz, S. & Banker, G. Two distinct mechanisms target membrane proteins to the axonal surface. Neuron 37, 611–624 (2003).

    Article  CAS  Google Scholar 

  35. Murthy, V.N. & Stevens, C.F. Reversal of synaptic vesicle docking at central synapses. Nat. Neurosci. 2, 503–507 (1999).

    Article  CAS  Google Scholar 

  36. Estes, P.S. et al. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J. Neurosci. 16, 5443–5456 (1996).

    Article  CAS  Google Scholar 

  37. Roos, J. & Kelly, R.B. The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr. Biol. 9, 1411–1414 (1999).

    Article  CAS  Google Scholar 

  38. Pyle, J.L., Kavalali, E.T., Piedras-Renteria, E.S. & Tsien, R.W. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28, 221–231 (2000).

    Article  CAS  Google Scholar 

  39. Martin, T.F. Racing lipid rafts for synaptic-vesicle formation. Nat. Cell Biol. 2, E9–11 (2000).

    Article  CAS  Google Scholar 

  40. Willig, K.I., Rizzoli, S.O., Westphal, V., Jahn, R. & Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  CAS  Google Scholar 

  41. Gaidarov, I., Santini, F., Warren, R.A. & Keen, J.H. Spatial control of coated-pit dynamics in living cells. Nat. Cell Biol. 1, 1–7 (1999).

    Article  CAS  Google Scholar 

  42. Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727 (2000).

    Article  CAS  Google Scholar 

  43. Gundelfinger, E.D., Kessels, M.M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nat. Rev. Mol. Cell Biol. 4, 127–139 (2003).

    Article  CAS  Google Scholar 

  44. Gonzalez-Gaitan, M. & Jackle, H. Role of Drosophila alpha-adaptin in presynaptic vesicle recycling. Cell 88, 767–776 (1997).

    Article  CAS  Google Scholar 

  45. Roos, J. & Kelly, R.B. Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J. Biol. Chem. 273, 19108–19119 (1998).

    Article  CAS  Google Scholar 

  46. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 (1997).

    Article  CAS  Google Scholar 

  47. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  48. Kugler, S. et al. Neuron-specific expression of therapeutic proteins: evaluation of different cellular promoters in recombinant adenoviral vectors. Mol. Cell. Neurosci. 17, 78–96 (2001).

    Article  CAS  Google Scholar 

  49. Olivo-Marin, J.-C. Extraction of spots in biological images using multiscale products. Pattern Recognit. 35, 1989–1996 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to O. Kochubey for his assistance with data analysis, R. Nehring for advice in molecular biology, E. Neher for support, A.K. Boegle and T. Groemer for critically reading the manuscript, all lab members for fruitful discussions and M. Pilot for expert technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 523, J.K.), the Human Frontier Science Project (J.K.) and the Boehringer Ingelheim Fonds (M.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wienisch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Absolute fluorescence responses from individual boutons. (PDF 73 kb)

Supplementary Fig. 2

Repetitive stimulation post digest and bleaching reveals vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are non-identical. (PDF 204 kb)

Supplementary Fig. 3

For 40 APs also spH-TEV transients of boutons co-overexpressing synaptophysin-mRFP show virtually no recovery postdigest. (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wienisch, M., Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat Neurosci 9, 1019–1027 (2006). https://doi.org/10.1038/nn1739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing