Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An essential role for ΔFosB in the nucleus accumbens in morphine action

Abstract

The transcription factor ΔFosB is induced in the nucleus accumbens (NAc) and dorsal striatum by the repeated administration of drugs of abuse. Here, we investigated the role of ΔFosB in the NAc in behavioral responses to opiates. We achieved overexpression of ΔFosB by using a bitransgenic mouse line that inducibly expresses the protein in the NAc and dorsal striatum and by using viral-mediated gene transfer to specifically express the protein in the NAc. ΔFosB overexpression in the NAc increased the sensitivity of the mice to the rewarding effects of morphine and led to exacerbated physical dependence, but also reduced their sensitivity to the analgesic effects of morphine and led to faster development of analgesic tolerance. The opioid peptide dynorphin seemed to be one target through which ΔFosB produced this behavioral phenotype. Together, these experiments demonstrated that ΔFosB in the NAc, partly through the repression of dynorphin expression, mediates several major features of opiate addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ΔFosB in the NAc increases the sensitivity to morphine's rewarding effects.
Figure 2: ΔFosB in the NAc reduces morphine analgesia and accelerates morphine tolerance.
Figure 3: ΔFosB in the NAc exacerbates morphine physical withdrawal.
Figure 4: Repression of the dynorphin-encoding gene by ΔFosB in the NAc.
Figure 5: Administration of the κ opioid receptor antagonist nor-BNI in the NAc mimics the ΔFosB phenotype.

Similar content being viewed by others

References

  1. Robinson, T.E. & Berridge, K.C. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95 (suppl. 2), S91–S117 (2000).

    PubMed  Google Scholar 

  2. Wise, R.A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998).

    Article  CAS  Google Scholar 

  3. Koob, G.F., Sanna, P.P. & Bloom, F.E. Neuroscience of addiction. Neuron 21, 467–476 (1998).

    Article  CAS  Google Scholar 

  4. Everitt, B.J. & Wolf, M.E. Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    Article  CAS  Google Scholar 

  5. Hyman, S.E. & Malenka, R.C. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695–703 (2001).

    Article  CAS  Google Scholar 

  6. Nestler, E.J. Molecular basis of long-term underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).

    Article  CAS  Google Scholar 

  7. Kalivas, P.W. Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol. 4, 23–29 (2004).

    Article  CAS  Google Scholar 

  8. Yao, W.D. et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638 (2004).

    Article  CAS  Google Scholar 

  9. Asanuma, M. & Cadet, J.L. Methamphetamine-induced increase in striatal NF-kappaB DNA-binding activity is attenuated in superoxide dismutase transgenic mice. Brain Res. Mol. Brain Res. 60, 305–309 (1998).

    Article  CAS  Google Scholar 

  10. Carlezon, W.A. et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).

    Article  CAS  Google Scholar 

  11. O'Donovan, K.J., Tourtellotte, W.G., Millbrandt, J. & Baraban, J.M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22, 167–173 (1999).

    Article  CAS  Google Scholar 

  12. Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl. Acad. Sci. USA 99, 11435–11440 (2002).

    Article  CAS  Google Scholar 

  13. Marinelli, M. & Piazza, P.V. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur. J. Neurosci. 16, 387–394 (2002).

    Article  Google Scholar 

  14. McClung, C.A. & Nestler, E.J. Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nat. Neurosci. 6, 1208–1215 (2003).

    Article  CAS  Google Scholar 

  15. Hope, B.T. et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244 (1994).

    Article  CAS  Google Scholar 

  16. Moratalla, R., Elibol, B., Vallejo, M. & Graybiel, A.M. Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17, 147–156 (1996).

    Article  CAS  Google Scholar 

  17. Nye, H.E. & Nestler, E.J. Induction of chronic fos-related antigens in rat brain by chronic morphine administration. Mol. Pharmacol. 49, 636–645 (1996).

    CAS  PubMed  Google Scholar 

  18. Hiroi, N. et al. FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. Proc. Natl. Acad. Sci. USA 94, 10397–10402 (1997).

    Article  CAS  Google Scholar 

  19. Pich, E.M., Pagliusi, S.R., Tessari, M., Talabot-Ayer, D., Hooft van Huijsduijnen, R. & Chiamulera, C. Common neural substrates for the addictive properties of nicotine and cocaine. Science 275, 83–86 (1997).

    Article  CAS  Google Scholar 

  20. Ehrlich, M.E., Sommer, J., Canas, E. & Unterwald, E.M. Periadolescent mice show enhanced DeltaFosB upregulation in response to cocaine and amphetamine. J. Neurosci. 22, 9155–9159 (2002).

    Article  CAS  Google Scholar 

  21. Werme, M. et al. ΔFosB regulates wheel running. J. Neurosci. 22, 8133–8138 (2002).

    Article  CAS  Google Scholar 

  22. Chen, J., Kelz, M.B., Hope, B.T., Nakabeppu, Y. & Nestler, E.J. Chronic FRAs: Stable variants of ΔFosB induced in brain by chronic treatments. J. Neurosci. 17, 4933–4941 (1997).

    Article  CAS  Google Scholar 

  23. Kelz, M.B. et al. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401, 272–276 (1999).

    Article  CAS  Google Scholar 

  24. Colby, C.R., Whisler, K., Steffen, C., Nestler, E.J. & Self, D.W. ΔFosB enhances incentive for cocaine. J. Neurosci. 23, 2488–2493 (2003).

    Article  CAS  Google Scholar 

  25. Peakman, M.C. et al. Inducible, brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine. Brain Res. 970, 73–86 (2003).

    Article  CAS  Google Scholar 

  26. Funada, M., Suzuki, T., Narita, M., Misawa, M. & Nagase, H. Blockade of morphine reward through the activation of kappa-opioid receptors in mice. Neuropharmacology 32, 1315–1323 (1993).

    Article  CAS  Google Scholar 

  27. Wang, X.M., Zhou, Y., Spangler, R., Ho, A., Han, J.S. & Kreek, M.J. Acute intermittent morphine increases preprodynorphin and kappa opioid receptor mRNA levels in the rat brain. Brain Res. Mol. Brain Res. 66, 184–187 (1999).

    Article  CAS  Google Scholar 

  28. Shippenberg, T.S., Chefer, V.I., Zapata, A. & Heidbreder, C.A. Modulation of the behavioural and neurochemical effects of psychostimulants by kapa-opioid receptor systems. Ann. N.Y. Acad. Sci. 937, 50–73 (2001).

    Article  CAS  Google Scholar 

  29. Akil, H. & Watson, S.J. Cloning of kappa opioid receptors: functional significance and future directions. Prog. Brain Res. 100, 81–86 (1994).

    Article  CAS  Google Scholar 

  30. Svingos, A.L., Colago, E.E. & Pickel, V.M. Cellular sites for dynorphin activation of kappa opioid receptor in the rat nucleus accumbens shell. J. Neurosci. 19, 1804–1812 (1999).

    Article  CAS  Google Scholar 

  31. Matthes, H.W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  CAS  Google Scholar 

  32. Frenois, F., Cador, M., Caille, S., Stinus, L. & Le Moine, C. Neural correlates of the motivational and somatic components of naloxone-precipitated morphine withdrawal. Eur. J. Neurosci. 16, 1377–1389 (2002).

    Article  Google Scholar 

  33. Maldonado, R., Stinus, L., Gold, L.H. & Koob, G.F. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J. Pharmacol. Exp. Ther. 261, 669–677 (1992).

    CAS  PubMed  Google Scholar 

  34. Harris, G.C. & Aston-Jones, G. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371, 155–157 (1994).

    Article  CAS  Google Scholar 

  35. Harris, G.C. & Aston-Jones, G. Altered motivation and learning following opiate withdrawal: evidence for prolonged dysregulation of reward processing. Neuropsychopharmacology 28, 865–871 (2003).

    Article  CAS  Google Scholar 

  36. Shippenberg, T.S., Heidbreder, C. & Lefevour, A. Sensitization to the conditioned rewarding effects of morphine: pharmacology and temporal characteristics. Eur. J. Pharmacol. 299, 33–39 (1996).

    Article  CAS  Google Scholar 

  37. Willis, W.D. & Westlund, K.N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14, 2–31 (1997).

    Article  CAS  Google Scholar 

  38. Inturrisi, C.E. Clinical pharmacology of opioids for pain. Clin. J. Pain 18 (suppl.), S3–13, 2002.

    Article  Google Scholar 

  39. Brog, J.S., Salyapongse, A., Deutch, A.Y. & Zahm, D.S. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J. Comp. Neurol. 338, 255–278 (1993).

    Article  CAS  Google Scholar 

  40. Gear, R.W. & Levine, J.D. Antinociception produced by an ascending spino-supraspinal pathway. J. Neurosci. 15, 3154–3161 (1995).

    Article  CAS  Google Scholar 

  41. Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287 (1999).

    Article  CAS  Google Scholar 

  42. Schmidt, B.L . et al. Altered nucleus accumbens circuitry mediates pain induced antinociception in morphine tolerant rats. J. Neurosci. 15, 6773–6780 (2002).

    Article  Google Scholar 

  43. Suzuki, T., Narita, M., Takahashi, Y., Misawa, M. & Nagase, H. Effects of nor-binaltorphimine on the development of analgesic tolerance and physiological dependence on morphine. Eur. J. Pharmacol. 213, 91–97 (1992).

    Article  CAS  Google Scholar 

  44. Cole, R.L., Konradi, C., Douglass, J. & Hyman, S.E. Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14, 813–823 (1995).

    Article  CAS  Google Scholar 

  45. Shaw-Lutchman, T.Z. et al. Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J. Neurosci. 22, 3663–3672 (2002).

    Article  CAS  Google Scholar 

  46. Yukhananov, R.Yu., Zhai, Q.Z., Persson, S., Post, C. & Nyberg, F. Chronic administration of morphine decreases level of dynorphin A in the rat nucleus accumbens. Neuropharmacology 32, 703–709 (1993).

    Article  CAS  Google Scholar 

  47. Nylander, I., Vlaskova, M. & Terenius, L. The effects of morphine treatment and morphine withdrawal on the dynorphin and enkephalin systems in Sprague-Dawley rats. Psychopharmacology (Berl.) 118, 391–400 (1995).

    Article  CAS  Google Scholar 

  48. Chefer, V.I. et al. Endogenous kappa-opioid receptor systems regulate mesoaccumbal dopamine dynamics and vulnerability to cocaine. J. Neurosci. 25, 5029–5037 (2005).

    Article  CAS  Google Scholar 

  49. Shippenberg, T.S., LeFevour, A. & Thompson, A.C. Sensitization to the conditioned rewarding effects of morphine and cocaine: differential effects of the kappa-opioid receptor agonist U69593. Eur. J. Pharmacol. 345, 27–34 (1998).

    Article  CAS  Google Scholar 

  50. Zachariou, V. et al. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. USA 100, 13656–13661 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse and National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J Nestler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tables

Opioid Receptor Levels and Opiate Withdrawal Behaviors in Inducible Bitransgenic Mice (PDF 97 kb)

Supplementary Methods (PDF 82 kb)

Supplementary References (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachariou, V., Bolanos, C., Selley, D. et al. An essential role for ΔFosB in the nucleus accumbens in morphine action. Nat Neurosci 9, 205–211 (2006). https://doi.org/10.1038/nn1636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing