Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent liberation of synaptic neuropeptide vesicles

Abstract

Despite the importance of neuropeptide release, which is evoked by long bouts of action potential activity and which regulates behavior, peptidergic vesicle movement has not been examined in living nerve terminals. Previous in vitro studies have found that secretory vesicle motion at many sites of release is constitutive: Ca2+ does not affect the movement of small synaptic vesicles in nerve terminals or the movement of large dense core vesicles in growth cones and endocrine cells. However, in vivo imaging of a neuropeptide, atrial natriuretic factor, tagged with green fluorescent protein in larval Drosophila melanogaster neuromuscular junctions shows that peptidergic vesicle behavior in nerve terminals is sensitive to activity-induced Ca2+ influx. Specifically, peptidergic vesicles are immobile in resting synaptic boutons but become mobile after seconds of stimulation. Vesicle movement is undirected, occurs without the use of axonal transport motors or F-actin, and aids in the depletion of undocked neuropeptide vesicles. Peptidergic vesicle mobilization and post-tetanic potentiation of neuropeptide release are sustained for minutes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRAP reveals Ca2+-dependent synaptic neuropeptide vesicle motion in peptidergic type III synapses.
Figure 2: Activity-dependent neuropeptide vesicle motion in type Ib boutons.
Figure 3: Neuropeptide vesicle movement is undirected after liberation.
Figure 4: LDCV mobilization persists without axonal transport motor activity and F-actin polymerization.
Figure 5: Persistence and activity dependence of neuropeptide vesicle liberation in type Ib boutons.
Figure 6: Robust neuropeptide release by electrical activity or depolarization.
Figure 7: Depletion of synaptic neuropeptide content detected with confocal microscopy.
Figure 8: Post-tetanic potentiation of neuropeptide release by type Ib boutons.

Similar content being viewed by others

References

  1. Zupanc, G.K. Peptidergic transmission: from morphological correlates to functional implications. Micron. 27, 35–91 (1996).

    Article  CAS  Google Scholar 

  2. Hokfelt, T., Broberger, C., Xu, Z.Q., Sergeyev, V., Ubink, R. & Diez, M. Neuropeptides—an overview. Neuropharmacology 39, 1337–1356 (2000).

    Article  CAS  Google Scholar 

  3. Taghert, P.H. & Veenstra, J.A. Drosophila neuropeptide signaling. Adv. Genet. 49, 1–65 (2003).

    Article  CAS  Google Scholar 

  4. Whim, M.D. & Lloyd, P.E. Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons of Aplysia. Proc. Natl. Acad. Sci. USA 86, 9034–9038 (1989).

    Article  CAS  Google Scholar 

  5. Martin, T.F. The molecular machinery for fast and slow neurosecretion. Curr. Opin. Neurobiol. 4, 626–632 (1994).

    Article  CAS  Google Scholar 

  6. Holt, M., Cooke, A., Neef, A. & Lagnado, L. High mobility of vesicles supports continuous exocytosis at a ribbon synapse. Curr. Biol. 14, 173–183 (2004).

    Article  CAS  Google Scholar 

  7. Rea, R. et al. Streamlined synaptic vesicle cycle in cone photoreceptor terminals. Neuron 41, 755–766 (2004).

    Article  CAS  Google Scholar 

  8. Henkel, A.W., Simpson, L.L., Ridge, R.M. & Betz, W.J. Synaptic vesicle movements monitored by fluorescence recovery after photobleaching in nerve terminals stained with FM1-43. J. Neurosci. 16, 3960–3967 (1996).

    Article  CAS  Google Scholar 

  9. Kraszewski, K., Daniell, L., Mundigl, O. & DeCamilli, P. Mobility of synaptic vesicles in nerve endings monitored by recovery from photobleaching of synaptic vesicle-associated fluorescence. J. Neurosci. 16, 5905–5913 (1996).

    Article  CAS  Google Scholar 

  10. Ng, Y.K., Lu, X. & Levitan, E.S. Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factor-differentiated PC12 cells. J. Physiol. 542, 395–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Becherer, U., Moser, T., Stuhmer, W. & Oheim, M. Calcium regulates exocytosis at the level of single vesicles. Nat. Neurosci. 6, 846–853 (2003).

    Article  CAS  Google Scholar 

  12. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  13. Seward, E.P., Chernevskaya, N.I. & Nowycky, M.C. Exocytosis in peptidergic nerve terminals exhibits two calcium-sensitive phases during pulsatile calcium entry. J. Neurosci. 15, 3390–3399 (1995).

    Article  CAS  Google Scholar 

  14. Brezina, V., Church, P.J. & Weiss, K.R. Temporal pattern dependence of neuronal peptide transmitter release: models and experiments. J. Neurosci. 20, 6760–6772 (2000).

    Article  CAS  Google Scholar 

  15. Ludwig, M. et al. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418, 85–89 (2002).

    Article  CAS  Google Scholar 

  16. Steyer, J.A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997).

    Article  CAS  Google Scholar 

  17. Olofsson, C.S. et al. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch. 444, 43–51 (2002).

    Article  CAS  Google Scholar 

  18. Duncan, R.R. et al. Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422, 176–180 (2003).

    Article  CAS  Google Scholar 

  19. Han, W., Ng, Y.K., Axelrod, D. & Levitan, E.S. Neuropeptide release by efficient recruitment of diffusing cytoplasmic secretory vesicles. Proc. Natl. Acad. Sci. USA 96, 14577–14582 (1999).

    Article  CAS  Google Scholar 

  20. Ng, Y.K. et al. Unexpected mobility variation among individual secretory vesicles produces an apparent refractory neuropeptide pool. Biophys. J. 84, 4127–4134 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Burke, N.V. et al. Neuronal peptide release is limited by secretory granule mobility. Neuron 19, 1095–1102 (1997).

    Article  CAS  Google Scholar 

  22. Levitan, E.S. Using GFP to image peptide hormone and neuropeptide release in vitro and in vivo. Methods 33, 281–286 (2004).

    Article  CAS  Google Scholar 

  23. Rao, S., Lang, C., Levitan, E.S. & Deitcher, D.L. Visualization of neuropeptide expression, transport, and exocytosis in Drosophila melanogaster. J. Neurobiol. 49, 159–172 (2001).

    Article  CAS  Google Scholar 

  24. Atwood, H.L., Govind, C.K. & Wu, C.F. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J. Neurobiol. 24, 1008–1024 (1993).

    Article  CAS  Google Scholar 

  25. Jia, X.X., Gorczyca, M. & Budnik, V. Ultrastructure of neuromuscular junctions in Drosophila: comparison of wild type and mutants with increased excitability. J. Neurobiol. 24, 1025–1044 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Husain, Q.M. & Ewer, J. Use of targetable GFP-tagged neuropeptide for visualizing neuropeptide release following execution of a behavior. J. Neurobiol. 59, 181–191 (2004).

    Article  CAS  Google Scholar 

  27. Heifetz, Y. & Wolfner, M.F. Mating, seminal fluid components, and sperm cause changes in vesicle release in the Drosophila female reproductive tract. Proc. Natl. Acad. Sci. USA 101, 6261–6266 (2004).

    Article  CAS  Google Scholar 

  28. Jan, L.Y. & Jan, Y.N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189–214 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J. & Wu, C.F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A 175, 179–191 (1994).

    Article  CAS  Google Scholar 

  30. Barclay, J.W., Atwood, H.L. & Robertson, R.M. Impairment of central pattern generation in Drosophila cysteine string protein mutants. J. Comp. Physiol A. 188, 71–78 (2002).

    Article  Google Scholar 

  31. Cattaert, D. & Birman, S. Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. J. Neurobiol. 48, 58–73 (2001).

    Article  CAS  Google Scholar 

  32. Pfister, K.K., Wagner, M.C., Bloom, G.S. & Brady, S.T. Modification of the microtubule-binding and ATPase activities of kinesin by N-ethylmaleimide (NEM) suggests a role for sulfhydryls in fast axonal transport. Biochemistry 28, 9006–9012 (1989).

    Article  CAS  Google Scholar 

  33. Phelps, K.K. & Walker, R.A. N-ethylmaleimide inhibits Ncd motor function by modification of a cysteine in the stalk domain. Biochemistry 38, 10750–10757 (1999).

    Article  CAS  Google Scholar 

  34. Perry, S.V. & Cotterill, J. The action of thiol reagents on the adenosine-triphosphatase activities of heavy meromyosin and L-myosin. Biochem. J. 96, 224–230 (1965).

    Article  CAS  PubMed  Google Scholar 

  35. Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953 (2000).

    Article  CAS  Google Scholar 

  36. Rizzoli, S.O. & Betz, W.J. The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037–2039 (2004).

    Article  CAS  Google Scholar 

  37. Bantignies, F., Goodman, R.H. & Smolik, S.M. Functional interaction between the coactivator Drosophila CREB-binding protein and ASH1, a member of the trithorax group of chromatin modifiers. Mol. Cell Biol. 20, 9317–9330 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grant NS32385 (to E.S.L.) and Oklahoma Center for Science and Technology grant HR03-048S (to R.S.H.). We thank C. Ziegler for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S Levitan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakiryanova, D., Tully, A., Hewes, R. et al. Activity-dependent liberation of synaptic neuropeptide vesicles. Nat Neurosci 8, 173–178 (2005). https://doi.org/10.1038/nn1377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing