Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice

Abstract

En route to their target, pioneering motor growth cones repeatedly encounter choice points at which they make pathway decisions. In the zebrafish mutant unplugged, two of the three segmental motor axons make incorrect decisions at a somitic choice point. Using positional cloning, we show here that unplugged encodes a homolog of muscle-specific kinase (MuSK) and that, unlike mammalian MuSK, unplugged has only a limited role in neuromuscular synaptogenesis. We demonstrate that unplugged is transiently expressed in cells adjacent to the choice point and that unplugged signaling before the arrival of growth cones induces changes in the extracellular environment. In addition, we find that the unplugged locus generates three different transcripts. The splice variant 1 (SV1) isoform lacks the extracellular modules essential for agrin responsiveness, and signaling through this isoform mediates axonal pathfinding, independent of the MuSK downstream component rapsyn. Our results demonstrate a new role for MuSK homologs in axonal pathway selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype and model of unplugged.
Figure 2: Cloning and sequence analysis of unplugged.
Figure 3: Neuromuscular synapse formation in wild-type, unplugged and twitch once (rapsyn) mutants.
Figure 4: Morpholino-mediated knockdown of individual unplugged transcripts.
Figure 5: Expression patterns of unplugged full-length and SV1 mRNA.
Figure 6: The unplugged mRNA and protein are concentrated at mature neuromuscular synapses.
Figure 7: Immunostaining for CSPs.

Similar content being viewed by others

References

  1. Kaprielian, Z., Runko, E. & Imondi, R. Axon guidance at the midline choice point. Dev. Dyn. 221, 154–181 (2001).

    Article  CAS  Google Scholar 

  2. Giger, R.J. & Kolodkin, A.L. Silencing the siren: guidance cue hierarchies at the CNS midline. Cell 105, 1–4 (2001).

    Article  CAS  Google Scholar 

  3. Shirasaki, R. & Pfaff, S.L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    Article  CAS  Google Scholar 

  4. Landmesser, L.T. The acquisition of motoneuron subtype identity and motor circuit formation. Int. J. Dev. Neurosci. 19, 175–182 (2001).

    Article  CAS  Google Scholar 

  5. Lance-Jones, C. & Landmesser, L. Pathway selection by chick lumbosacral motoneurons during normal development. Proc. R. Soc. Lond. B Biol. Sci. 214, 1–18 (1981).

    Article  CAS  Google Scholar 

  6. Tosney, K.W. & Landmesser, L.T. Pattern and specificity of axonal outgrowth following varying degrees of chick limb bud ablation. J. Neurosci. 4, 2518–2527 (1984).

    Article  CAS  Google Scholar 

  7. Ferns, M.J. & Hollyday, M. Motor innervation of dorsoventrally reversed wings in chick/quail chimeric embryos. J. Neurosci. 13, 2463–2476 (1993).

    Article  CAS  Google Scholar 

  8. Helmbacher, F., Schneider-Maunoury, S., Topilko, P., Tiret, L. & Charnay, P. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 127, 3313–3324 (2000).

    CAS  PubMed  Google Scholar 

  9. Kania, A. & Jessell, T.M. Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron 38, 581–596 (2003).

    Article  CAS  Google Scholar 

  10. Beattie, C.E. Control of motor axon guidance in the zebrafish embryo. Brain Res. Bull. 53, 489–500 (2000).

    Article  CAS  Google Scholar 

  11. Bernhardt, R.R., Goerlinger, S., Roos, M. & Schachner, M. Anterior-posterior subdivision of the somite in embryonic zebrafish: implications for motor axon guidance. Dev. Dyn. 213, 334–347 (1998).

    Article  CAS  Google Scholar 

  12. Eisen, J.S., Myers, P.Z. & Westerfield, M. Pathway selection by growth-cones of identified motoneurons in live zebra fish embryos. Nature 320, 269–271 (1986).

    Article  CAS  Google Scholar 

  13. Felsenfeld, A.L., Curry, M. & Kimmel, C.B. The fub-1 mutation blocks initial myofibril formation in zebrafish muscle pioneer cells. Dev. Biol. 148, 23–30 (1991).

    Article  CAS  Google Scholar 

  14. Melançon, E., Liu, D.W.C., Westerfield, M. & Eisen, J.S. Pathfinding by identified zebrafish motorneurons in the absence of muscle pioneers. J. Neurosci. 17, 7796–7804 (1997).

    Article  Google Scholar 

  15. Zhang, J. & Granato, M. The zebrafish unplugged gene controls motor axon pathway selection. Development 127, 2099–2111 (2000).

    CAS  PubMed  Google Scholar 

  16. Zeller, J. & Granato, M. The zebrafish diwanka gene controls an early step of motor growth cone migration. Development 126, 3461–3472 (1999).

    CAS  PubMed  Google Scholar 

  17. Devoto, S.H., Melancon, E., Eisen, J.S. & Westerfield, M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371–3380 (1996).

    CAS  Google Scholar 

  18. Forrester, W.C. The Ror receptor tyrosine kinase family. Cell Mol. Life Sci. 59, 83–96 (2002).

    Article  CAS  Google Scholar 

  19. Burden, S.J. Building the vertebrate neuromuscular synapse. J. Neurobiol. 53, 501–511 (2002).

    Article  CAS  Google Scholar 

  20. Sanes, J.R. & Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  Google Scholar 

  21. Zhang, J., Malayaman, S., Davis, C. & Granato, M. A dual role for the zebrafish unplugged gene in motor axon pathfinding and pharyngeal development. Dev. Biol. 240, 560–573. (2001).

    Article  CAS  Google Scholar 

  22. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    Article  CAS  Google Scholar 

  23. Gautam, M. et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236 (1995).

    Article  CAS  Google Scholar 

  24. DeChiara, T.M. et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85, 501–512 (1996).

    Article  CAS  Google Scholar 

  25. Coers, C. Structure and organization of the myoneural junction. Int. Rev. Cytol. 22, 239–267 (1967).

    Article  CAS  Google Scholar 

  26. Westerfield, M., McMurray, J.V. & Eisen, J.S. Identified motoneurons and their innervation of axial muscles in the zebrafish. J. Neurosci. 6, 2267–2277 (1986).

    Article  CAS  Google Scholar 

  27. Ono, F., Shcherbatko, A., Higashijima, S., Mandel, G. & Brehm, P. The zebrafish motility mutant twitch once reveals new roles for rapsyn in synaptic function. J. Neurosci. 22, 6491–6498 (2002).

    Article  CAS  Google Scholar 

  28. Draper, B.W., Morcos, P.A. & Kimmel, C.B. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30, 154–156 (2001).

    Article  CAS  Google Scholar 

  29. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  30. Du, S.J., Gao, J. & Anyangwe, V. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 134, 123–134 (2003).

    Article  Google Scholar 

  31. Chung, K.Y., Taylor, J.S., Shum, D.K. & Chan, S.O. Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos. Development 127, 2673–2683 (2000).

    CAS  PubMed  Google Scholar 

  32. Walz, A., Anderson, R.B., Irie, A., Chien, C.B. & Holt, C.E. Chondroitin sulfate disrupts axon pathfinding in the optic tract and alters growth cone dynamics. J. Neurobiol. 53, 330–342 (2002).

    Article  CAS  Google Scholar 

  33. Karlstrom, R.O., Talbot, W.S. & Schier, A.F. Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning. Genes Dev. 13, 388–393 (1999).

    Article  CAS  Google Scholar 

  34. Du, S.J. & Dienhart, M. Gli2 mediation of hedgehog signals in slow muscle induction in zebrafish. Differentiation 67, 84–91 (2001).

    Article  CAS  Google Scholar 

  35. Zeller, J. et al. Migration of zebrafish spinal motor nerves into the periphery requires multiple myotome-derived cues. Dev. Biol. 252, 241–256 (2002).

    Article  CAS  Google Scholar 

  36. Hwang, H.Y., Olson, S.K., Esko, J.D. & Horvitz, H.R. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423, 439–443 (2003).

    Article  CAS  Google Scholar 

  37. Kitagawa, H., Uyama, T. & Sugahara, K. Molecular cloning and expression of a human chondroitin synthase. J. Biol. Chem. 276, 38721–38726 (2001).

    Article  CAS  Google Scholar 

  38. Landgraf, M., Baylies, M. & Bate, M. Muscle founder cells regulate defasciculation and targeting of motor axons in the Drosophila embryo. Curr. Biol. 9, 589–592 (1999).

    Article  CAS  Google Scholar 

  39. Hesser, B.A., Sander, A. & Witzemann, V. Identification and characterization of a novel splice variant of MuSK. FEBS Lett. 442, 133–137 (1999).

    Article  CAS  Google Scholar 

  40. Zhou, H., Glass, D.J., Yancopoulos, G.D. & Sanes, J.R. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J. Cell Biol. 146, 1133–1146 (1999).

    Article  CAS  Google Scholar 

  41. Hikasa, H., Shibata, M., Hiratani, I. & Taira, M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development 129, 5227–5239 (2002).

    CAS  PubMed  Google Scholar 

  42. Oishi, I. et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–654 (2003).

    Article  CAS  Google Scholar 

  43. Moeller, C., Swindell, E.C., Kispert, A. & Eichele, G. Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Development 130, 5103–5111 (2003).

    Article  CAS  Google Scholar 

  44. Yoshikawa, S., McKinnon, R.D., Kokel, M. & Thomas, J.B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003).

    Article  CAS  Google Scholar 

  45. Lyuksyutova, A.I. et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984–1988 (2003).

    Article  CAS  Google Scholar 

  46. Mullins, M.C., Hammerschmidt, M., Haffter, P. & Nüsslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    Article  CAS  Google Scholar 

  47. Odenthal, J. & Nusslein-Volhard, C. Forkhead domain genes in zebrafish. Dev. Genes Evol. 208, 245–258 (1998).

    Article  CAS  Google Scholar 

  48. Downes, G.B., Waterbury, J.A. & Granato, M. Rapid in vivo labeling of identified zebrafish neurons. Genesis 34, 196–202 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Coulson and the Sanger Center for sequencing BAC and PAC clones; P. Brehm for twitch once mutants; and M. Mullins, G. Bashaw, V. Schneider, G. Downes, H. Burgess, M. Gyda and L. Jing for critical comments on the manuscript. This work was supported by a Fellowship from the Myasthenia Gravis Foundation to J.L.L. and grants from the National Institutes of Health to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Granato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment between unplugged and MuSK family members. (PDF 77 kb)

Supplementary Fig. 2

unplugged dependent tyrosine phosphorylation on adaxial cells. Confocal images of cross section from 20 somite stage wild-type (a-c, g-i) and unplugged embryos (d-f, j-l) stained with α-pTyr and with the adaxial specific F59 antibody. (a-f) In somites 18-20, phosphotyrosine staining is detectable through out the embryo, but appears concentrated on premigratory adaxial cells. Note the intense phosphotyrosine staining on membranes between adaxial cells (arrowheads in inset) (g-l) In somites 16/15, adaxial cells are about to migrate. In unplugged mutants, phosphotyrosine staining on membranes between adaxial cells is severely reduced (k, l; 15 sections from 5 genotyped -/- embryos). No reduction is detectable on lateral membranes shared with notochord (medial) or fast muscle (lateral), but there seems to be increased phosphotyrosine staining on fast muscle (lateral). (JPG 183 kb)

Supplementary Video 1

Wild-type larvae at 5 dpf. (MOV 207 kb)

Supplementary Video 2

unplugged larvae at 5 dpf. (MOV 158 kb)

Supplementary Methods (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Lefebvre, J., Zhao, S. et al. Zebrafish unplugged reveals a role for muscle-specific kinase homologs in axonal pathway choice. Nat Neurosci 7, 1303–1309 (2004). https://doi.org/10.1038/nn1350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1350

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing