Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert

Abstract

Behavioral and neuroendocrine responses underlying systemic osmoregulation are synergistically controlled by osmoreceptors and neuropeptides released within the hypothalamus. Although mechanisms underlying osmoreception are understood, the cellular basis for the integration of osmotic and peptidergic signals remains unknown. Here we show that the excitatory effects of angiotensin II, cholecystokinin and neurotensin on supraoptic neurosecretory neurons are due to the stimulation of the stretch-inactivated cation channels responsible for osmoreception. This molecular convergence underlies the facilitatory effects of neuropeptides on responses to osmotic stimulation and provides a basis for the gating effects of plasma osmolality on the responsiveness of osmoregulatory neurons to peptidergic stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptidergic excitation of MNCs.
Figure 2: Peptide actions on single-channel activity.
Figure 3: Channel kinetics during peptidergic stimulation.
Figure 4: Excitatory peptides convergently regulate 35 pS cation channels in MNCs.
Figure 5: Excitatory peptides stimulate stretch-inactivated cation channels in MNCs.
Figure 6: Effects of Gd3+ on responses to peptidergic stimulation.
Figure 7: Interactions between osmotic and peptidergic stimuli in hypothalamic MNCs.

Similar content being viewed by others

References

  1. Bourque, C. W. Osmoregulation of vasopressin neurons: a synergy of intrinsic and synaptic processes. Prog. Brain. Res. 119, 59–76 (1998).

    Article  CAS  Google Scholar 

  2. Oliet, S. H. R. & Bourque, C. W. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364, 341–343 (1993).

    Article  CAS  Google Scholar 

  3. Oliet, S. H. R. & Bourque, C. W. Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons. Neuron 16, 175–181 (1996).

    Article  CAS  Google Scholar 

  4. Bourque, C. W. & Oliet, S.H.R. Osmoreceptors in the central nervous system. Annu. Rev. Physiol. 59, 601–619 (1997).

    Article  CAS  Google Scholar 

  5. Leng, G., Blackburn, R. E., Dyball, R. E. J. & Russell, J. A. Role of the anterior peri-third ventricular structures in the regulation of supraoptic neuronal activity and neurohypophysial hormone secretion in the rat. J. Neuroendocrinol. 1, 35–46 (1989).

    Article  CAS  Google Scholar 

  6. Bourque, C. W., Richard, D. & Oliet, S. H. R. Osmoreceptors, osmoreception, and osmoregulation. Front. Neuroendocrinol. 15, 231–274 (1994).

    Article  CAS  Google Scholar 

  7. Richard D. & Bourque, C. W. Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. J. Physiol. (Lond.) 489, 567–577 (1995).

    Article  CAS  Google Scholar 

  8. Andrew, R. D. & Dudek, F. E. Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J. Neurophysiol. 51, 552–566 (1984).

    Article  CAS  Google Scholar 

  9. Hu. B. & Bourque, C. W. NMDA receptor-mediated rhythmic bursting activity in rat supraoptic nucleus neurones in vitro. J. Physiol. (Lond.) 458, 667–687 (1992).

    Article  CAS  Google Scholar 

  10. Bourque, C. W., Kirkpatrick, K. & Jarvis, C. R. Extrinsic modulation of spike afterpotentials in rat hypothalamoneurohypophysial neurons. Cell. Mol. Neurobiol. 18, 3–12 (1998).

    Article  CAS  Google Scholar 

  11. Bicknell, R. J. Optimizing release from peptide hormone secretory nerve terminals. J. Exp. Biol. 139, 51–65 (1988).

    CAS  PubMed  Google Scholar 

  12. Poulain, D. A. & Wakerley, J. B. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7, 773–809 (1982).

    Article  CAS  Google Scholar 

  13. Renaud, L. P. & Bourque, C. W. Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog. Neurobiol. 36, 131–169 (1991).

    Article  CAS  Google Scholar 

  14. Renaud, L. P. et al. Synaptic and neurotransmitter regulation of activity in mammalian hypothalamic magnocellular neurosecretory cells. Prog. Brain. Res. 92, 277–288 (1992).

    Article  CAS  Google Scholar 

  15. Jhamandas, J. H., Lind, R. W. & Renaud, L. P. Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res . 487, 52–61 (1989).

    Article  CAS  Google Scholar 

  16. Sawchenko, P. E. & Pfeiffer, S. W. Ultrastructural localization of inhibin β- and somatostatin-28-immunoreactivities in the paraventricular and supraoptic nuclei. Brain Res. 694, 233–245 (1995).

    Article  CAS  Google Scholar 

  17. Neumann, I., Landgraf, R., Takahashi, Y., Pittman, Q. J. & Russell, J. A. Stimulation of oxytocin release within the supraoptic nucleus and into blood by CCK-8. Am. J. Physiol. 267, R1626–R1631 (1994).

    CAS  PubMed  Google Scholar 

  18. Hakansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C. & Meister, B. Leptin receptor immunoreactivity in chemically-defined target neurons of the hypothalamus. J. Neurosci. 18, 559–572 (1998).

    Article  CAS  Google Scholar 

  19. Jennes, L., Stumpf, W. E. & Kalivas, P. W. Neurotensin: topographical distribution in the brain by immuno-histochemistry. J. Comp. Neurol. 210, 211–224 (1982).

    Article  CAS  Google Scholar 

  20. Murase, T., Kondo, K., Otake, K. & Oiso, Y. Pituitary adenylate cyclase-activating polypeptide stimulates arginine vasopressin release in conscious rats. Neuroendocrinology 57, 1092–1096 (1993).

    Article  CAS  Google Scholar 

  21. Kimura, S. et al. Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: light and electron microscopic immunocytochemical studies. J. Neuroendocrinol. 6, 503–507 (1994).

    Article  CAS  Google Scholar 

  22. Venetikou, M. S., Lacoumenta, S., Chatei, M. A., Burrin, J. M. & Bloom, S. R. Comparative studies on the release of vasopressin and 7B2 from isolated hypothalami. Regul. Pept. 29, 163–172 (1990).

    Article  CAS  Google Scholar 

  23. Gabreels, B. A. et al. The vasopressin precursor is not processed in the hypothalamus of Wolfram syndrome patients with diabetes insipidus: evidence for the involvement of PC2 and 7B2. J. Clin. Endocrinol. Metab. 83, 4026–4033 (1998).

    Article  CAS  Google Scholar 

  24. Akaishi, T., Negoro, H. & Kobayashi, S. Responses of paraventricular and supraoptic units to angiotensin II, SAR1-ILE8-angiotensin II, and hypertonic NaCl administered into the cerebral ventricle. Brain Res. 188, 499–511 (1980).

    Article  CAS  Google Scholar 

  25. Sladek, C. D., Blair, M. L. & Ramsay, D. J. Further studies on the role of angiotensin in the osmotic control of vasopressin release by the organ-cultured rat hypothalamo-neurohypophysial system. Endocrinology 111, 599–607 (1982).

    Article  CAS  Google Scholar 

  26. Wilson, B. C. & Summerlee, A. J. S. Effects of exogenous relaxin on oxytocin and vasopressin release and the intramammary pressure response to central hyperosmotic challenge. J. Endocrinol. 141, 75–80 (1994).

    Article  CAS  Google Scholar 

  27. Oliet, S. H. R., Plotsky, P. M. & Bourque, C. W. Effects of activin-A on neurons acutely isolated from the rat supraoptic nucleus. J. Neuroendocrinol. 7, 661–663 (1995).

    Article  CAS  Google Scholar 

  28. Yang, C. R., Phillips, M. I. & Renaud, L. P. Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am. J. Physiol. 262, R1333–R1338 (1992).

    Google Scholar 

  29. Jarvis, C. R., Bourque, C. W. & Renaud, L. P. Depolarizing action of cholecystokinin on rat supraoptic neurones in vitro. J. Physiol. (Lond.) 458, 621–632 (1992).

    Article  CAS  Google Scholar 

  30. Kirkpatrick, K. & Bourque, C. W. Effects of neurotensin on rat supraoptic nucleus neurones in vitro. J. Physiol. (Lond.) 482, 373–381 (1995).

    Article  CAS  Google Scholar 

  31. Shibuya, I. et al. Patch-clamp analysis of the mechanism of PACAP-induced excitation in rat supraoptic neurones. J. Neuroendocrinol. 10, 759–768 (1998).

    Article  CAS  Google Scholar 

  32. Senatorov, V. V., Yang, C. R., Marcinkievicz, M., Chrétien, M. & Renaud, L.P. Depolarizing action of secretory granule protein 7B2 on rat supraoptic neurosecretory neurons. J. Neuroendocrinol. 5, 533–536 (1993).

    Article  CAS  Google Scholar 

  33. Morris, C. E. & Sigurdson, W. J. Stretch-inactivated ion channels co-exist with stretch-activated ion channels. Science 243, 807–809 (1989).

    Article  CAS  Google Scholar 

  34. Dunn, F. L., Brennan, T. J., Nelson, A. E. & Robertson, G. L. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J. Clin. Invest. 52, 3212–3219 (1973).

    Article  CAS  Google Scholar 

  35. Voisin, D. L., Chakfe, Y. & Bourque, C. W. Coincident detection of CSF Na+ and osmotic pressure in osmoregulatory neurons of the supraoptic nucleus. Neuron 24, 453–460 (1999).

    Article  CAS  Google Scholar 

  36. Oliet, S. H. R. & Bourque, C. W. Steady-state osmotic modulation of cationic conductance in neurons of the rat supraoptic nucleus. Am. J. Physiol. 265, R1475–R1479 (1993).

    CAS  PubMed  Google Scholar 

  37. Murphy, T. J., Alexander, R. W., Griendling, K. K., Runge, M. S. & Bernstein, K. E. Isolation of a cDNA encoding the vascular type 1 angiotensin II receptor. Nature 351, 233–236 (1991).

    Article  CAS  Google Scholar 

  38. Wank, S. A., Pisegna, J. R. & De Weerth, A. Brain and gastrointestinal cholecystokinin receptor family: Structure and functional expression. Proc. Nat. Acad. Sci. USA 89, 8691–8695 (1992).

    Article  CAS  Google Scholar 

  39. Vincent, J. P., Mazella, J. & Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 20, 302–309 (1999).

    Article  CAS  Google Scholar 

  40. Hunyady, L., Balla, T. & Catt, K. J. The ligand binding site of the angiotensin AT1 receptor. Trends Pharmacol. Sci. 17, 135–140 (1996).

    Article  CAS  Google Scholar 

  41. Kopin, A. S. et al. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Nat. Acad. Sci. USA 89, 3605–3609 (1992).

    Article  CAS  Google Scholar 

  42. Lee, Y.-M. et al. The human brain cholecystokinin-B/gastrin receptor. Cloning and characterization. J. Biol. Chem. 268, 8164–8169 (1993).

    CAS  PubMed  Google Scholar 

  43. Hiruma, H. & Bourque, C. W. P2 purinoceptor-mediated depolarization of rat supraoptic neurosecretory cells in vitro. J. Physiol. (Lond.) 489, 805–811 (1995).

    Article  CAS  Google Scholar 

  44. Yang, C. R., Bourque, C. W. & Renaud, L. P. Dopamine D2 receptor activation depolarizes rat supraoptic neurones in hypothalamic explants. J. Physiol. (Lond.) 443, 405–419 (1991).

    Article  CAS  Google Scholar 

  45. Smith, B. N. & Armstrong, W. E. The ionic dependence of the histamine-induced depolarization of vasopressin neurons in the rat supraoptic nucleus. J. Physiol. (Lond.) 495, 465–478 (1996).

    Article  CAS  Google Scholar 

  46. Sutarmo Setiadji, V. et al. Actions of prostaglandin E2 on rat supraoptic neurones. J. Neuroendocrinol. 10, 927–936 (1998).

    Article  CAS  Google Scholar 

  47. Guharay, F. & Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond.) 352, 685–701 (1984).

    Article  CAS  Google Scholar 

  48. Oliet, S. H. R. & Bourque, C. W. Properties of supraoptic magnocellular neurones isolated from the adult rat. J. Physiol. (Lond.) 455, 291–306 (1992).

    Article  CAS  Google Scholar 

  49. Drapeau, P. Loss of channel modulation by transmitter and protein kinase C during innervation of an identified leech neuron. Neuron 4, 875–882 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an operating grant and Senior Scientist award to C.W.B. from the Medical Research Council of Canada. We thank S.H.R. Oliet for comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bourque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakfe, Y., Bourque, C. Excitatory peptides and osmotic pressure modulate mechanosensitive cation channels in concert. Nat Neurosci 3, 572–579 (2000). https://doi.org/10.1038/75744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75744

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing