Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional changes at periphery and cortex following dorsal root lesions in adult monkeys

Abstract

Chronic peripheral nerve injuries produce neural changes at different levels of the somatosensory pathway, but these responses remain poorly defined. We selectively removed cutaneous input from the index finger and thumb in young adult macaque monkeys by lesioning dorsal rootlets to examine both immediate and long-term systemic responses to this deficit. Corresponding digit representations within somatosensory cortex (SI) were initially silenced, but two to seven months later again responded to cutaneous stimulation of the ‘deafferented’ digits. We remapped cutaneous receptive fields (RFs) within adjacent intact dorsal rootlets two to four months after lesioning. RF distributions had greatly expanded, so that rootlets previously innervating adjacent hand regions now responded to stimulation of the index finger and/or thumb. Thus our results demonstrate peripherally mediated central reorganization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptive field maps obtained before and immediately after making selective dorsal rootlet lesions to remove cutaneous input from the index finger (D2) and thumb (D1) of the left hand.
Figure 2: Two examples of cutaneous RF maps obtained from dorsal rootlets immediately before lesion, and for peri-lesion rootlets and corresponding somatosensory cortex obtained during the terminal experiment.

Similar content being viewed by others

References

  1. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  Google Scholar 

  2. Calford, M. B. & Tweedale, R. Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation. Nature 332, 446–448 (1988).

    Article  CAS  Google Scholar 

  3. Kaas, J. H. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14, 137–167 (1991).

    Article  CAS  Google Scholar 

  4. Kelahan, A. M. & Doetsch, G. S. Time-dependent changes in the functional organization of somatosensory cerebral cortex following digit amputation in adult raccoons. Somatosens. Res. 2, 49–81 (1984).

    Article  CAS  Google Scholar 

  5. Merzenich, M. M. et al. Progression of change following median nerve section in the cortical representations of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience 10, 639–665 (1983).

    Article  CAS  Google Scholar 

  6. Merzenich, M. M. et al. Somatosensory cortical map changes following digital amputation in adult monkeys. J. Comp. Neurol. 224, 591–605 (1984).

    Article  CAS  Google Scholar 

  7. Florence, S. L., Garraghty, P. E., Carlson, M. & Kaas, J. H. Sprouting of peripheral nerve axons in the spinal cord of monkeys. Brain Res. 601, 343–348 (1993).

    Article  CAS  Google Scholar 

  8. Kaas, J. H. & Florence, S. L. Mechanisms of reorganization in sensory systems of primates after peripheral nerve injury. Adv. Neurol. 73, 147–158 (1997).

    CAS  PubMed  Google Scholar 

  9. Kaas, J. H., Florence, S. L. & Jain, N. Subcortical contributions to massive cortical reorganizations. Neuron 22, 657–660 (1999).

    Article  CAS  Google Scholar 

  10. Snow, P. J. & Wilson, P. Progress in Sensory Physiology (Springer, Berlin, 1991).

    Google Scholar 

  11. Florence, S. L. & Kaas, J. H. Large scale reorganization at multiple levels of the somatosensory pathway follows therapeutic amputation of the hand in monkeys. J. Neurosci. 15, 8083–8095 (1995).

    Article  CAS  Google Scholar 

  12. Heinen, S. J. & Skavenski, A. A. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp. Brain Res. 83, 670–674 (1991).

    Article  CAS  Google Scholar 

  13. Darian-Smith, C. & Gilbert, C. D. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J. Neurosci. 15, 1631–1647 (1995).

    Article  CAS  Google Scholar 

  14. Gilbert C. D. & Darian-Smith, C. in Fifth Conference on the Neurobiology of Learning and Memory 293–301 (Oxford Univ. Press, 1995).

    Google Scholar 

  15. Florence, S. L. et al. Central reorganisation of sensory pathways following peripheral nerve regeneration in fetal monkeys. Nature 381, 69–71 (1996).

    Article  CAS  Google Scholar 

  16. Sherrington, C. S. in Textbook of Physiology Vol. II 920–1001 (Pentland, London, 1900).

    Google Scholar 

  17. Willis, W. D. & Coggeshall, R. E. Sensory Mechanisms of the Spinal Cord, 2nd Ed. (Plenum, New York, 1991).

    Book  Google Scholar 

  18. Sunderland, S. Nerve Injuries and Their Repair. A Critical Appraisal (Churchill Livingstone, New York, 1991).

    Google Scholar 

  19. Basbaum, A. I. & Wall, P. D. Chronic changes in the response of cells in adult cat dorsal horn following partial deafferentation: the appearance of responding cells in a previously non-responsive region. Brain Res. 116, 181–204 (1976).

    Article  CAS  Google Scholar 

  20. Mendell, L. M., Sassoon, E. M. & Wall, P. D. Properties of synaptic linkage from long ranging afferents onto dorsal horn neurones in normal and deafferented cats. J. Physiol. (Lond.) 285, 299–310 (1978).

    Article  CAS  Google Scholar 

  21. Sedivec, M. J., Ovelmen-Levitt, J., Karp, R. & Mendell, L. M. Increase in nociceptive input to spinocervical tract neurons following chronic partial deafferentation. J. Neurosci. 3, 1511–1519 (1983).

    Article  CAS  Google Scholar 

  22. Pons, T. P. et al. Massive reorganization of the primary somatosensory cortex after peripheral sensory deafferentation. Science 252, 1857–1860 (1991).

    Article  CAS  Google Scholar 

  23. Rausell, E., Cusick, C. G., Taub, E. & Jones, E. G. Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by calcium-binding proteins and down-regulates λ-aminobutyric acid type A receptors at thalamic levels. Proc. Natl. Acad. Sci. USA 89, 2571–2575 (1992).

    Article  CAS  Google Scholar 

  24. Jones, E. G. & Pons, T. P. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 282, 1121–1125 (1998).

    Article  CAS  Google Scholar 

  25. Nelson, R. J., Sur, M., Felleman, D. J. & Kaas, J. H. Representations of the body surface in postcentral parietal cortex of Macaca fascicularis. J. Comp. Neurol. 192, 611–643 (1980).

    Article  CAS  Google Scholar 

  26. Kaas. J. H., Nelson, R. J., Sur, M., Lin, C. S. & Merzenich, M. M. Multiple representations of the body within the primary somatosensory cortex of primates. Science 204, 521–523 (1979).

    Article  CAS  Google Scholar 

  27. Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T. & Guic, R. E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviourally controlled tactile stimulation. J. Neurophysiol. 63, 82–104 (1990).

    Article  CAS  Google Scholar 

  28. Edeline, J. M. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog. Neurobiol. 57, 165–224 (1999).

    Article  CAS  Google Scholar 

  29. Jain, N., Catania, K. C. & Kaas, J. H. Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature 386, 495–498 (1997).

    Article  CAS  Google Scholar 

  30. Galea, M. P. & Darian-Smith, I. Corticospinal projection patterns following unilateral section of the cervical spinal cord in the newborn and juvenile macaque monkey. J. Comp. Neurol. 381, 282–306 (1997).

    Article  CAS  Google Scholar 

  31. Koerber, H. R., Mirnics, K. & Mendell, M. Properties of regenerated primary afferents and their functional connections. J. Neurophysiol. 73, 693–701 (1995).

    Article  CAS  Google Scholar 

  32. Healy, C., LeQuesne, P. M. & Lynn, B. Collateral sprouting of cutaneous nerves in man. Brain 119, 2063–2072 (1996).

    Article  Google Scholar 

  33. Devor, M. & Wall, P. D. Reorganization of spinal cord sensory map after peripheral nerve injury. Nature 276, 75–76 (1978).

    Article  CAS  Google Scholar 

  34. Rodin, B. E., Sampogna, S. L. & Kruger, L. An examination of intraspinal sprouting in dorsal root axons with the tracer horseradish peroxidase. J. Comp. Neurol. 215, 187–198 (1983).

    Article  CAS  Google Scholar 

  35. LaMotte, C. C. & Kapadia, S. E. Deafferentation-induced terminal field expansion of myelinated saphenous afferents in the adult rat dorsal horn and the nucleus gracilis following pronase injection of the sciatic nerve. J. Comp. Neurol. 330, 83–94 (1993).

    Article  CAS  Google Scholar 

  36. McMahon, S. B. & Kett-White, R. Sprouting of peripherally regenerating primary sensory neurones in the adult central nervous system. J. Comp. Neurol. 304, 307–315 (1991).

    Article  CAS  Google Scholar 

  37. Woolf, C. J., Shortland, P. & Coggeshall, R. E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75–78 (1992).

    Article  CAS  Google Scholar 

  38. Fitzgerald, M., Woolf, C. J. & Shortland, P. Collateral sprouting of the central terminals of cutaneous primary afferent neurons in the rat spinal cord: pattern, morphology, and influence of targets. J. Comp. Neurol. 300, 370–385 (1990).

    Article  CAS  Google Scholar 

  39. Cameron, A. A., Pover, C. M., Willis, W. D. & Coggeshall, R.E. Evidence that fine primary afferent axons innervate a wider territory in the superficial dorsal horn following peripheral axotomy. Brain Res. 575, 151–154 (1992).

    Article  CAS  Google Scholar 

  40. Tong, Y.-G. et al. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting. J. Comp. Neurol. 404, 143–158 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project Grants 960246 and 990097 awarded by the Australian NHMRC. We thank Ken Miller and Tony Goodwin for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Darian-Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darian-Smith, C., Brown, S. Functional changes at periphery and cortex following dorsal root lesions in adult monkeys. Nat Neurosci 3, 476–481 (2000). https://doi.org/10.1038/74852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing