Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How do dendrites take their shape?

Abstract

Recent technical advances have made possible the visualization and genetic manipulation of individual dendritic trees. These studies have led to the identification and characterization of molecules that are important for different aspects of dendritic development. Although much remains to be learned, the existing knowledge has allowed us to take initial steps toward a comprehensive understanding of how complex dendritic trees are built. In this review, we describe recent advances in our understanding of the molecular mechanisms underlying dendritic morphogenesis, and discuss their cell-biological implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualizing individual dendrites.
Figure 2: Major steps of dendritic development.

Similar content being viewed by others

References

  1. Cajal, S. R. Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  2. Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Cowan, W. M. The emergence of modern neuroanatomy and developmental neurobiology. Neuron 20, 413–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Lo, D. C., McAllister, A. K. & Katz, L. C. Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13, 1263–1268 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Arnold, D., Feng, L., Kim, J. & Heintz, N. A strategy for the analysis of gene expression during neural development. Proc. Natl. Acad. Sci. USA 91, 9970–9974 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, G.-Y. & Cline, H. T. Stablization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549–2561 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Banker, G. A. & Cowan, W. M. Further observations on hippocampal neurons in dispersed cell culture. J. Comp. Neurol. 187, 469–493 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Wässle, H., Peichl, L. & Boycott, B. B. Dendritic territories of cat reginal ganglion cells. Nature 292, 344–345 (1981).

    Article  PubMed  Google Scholar 

  14. Bradke, F. & Dotti, C. G. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol. 10, 574–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lüscher, C., Nicoll, R. A., Malenka, R. C. & Muller, D. Synaptic plasticity and dynamic modulation of the postsynpatic membrane. Nat. Neurosci. 3, 545–550 (2000).

    Article  PubMed  Google Scholar 

  16. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Jontes, J. D. & Smith, S. J. Filopodia, spines and the generation of synpatic diversity. Neuron 27, 11–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. McAllister, A. K. Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Nedivi, E., Wu, G. Y. & Cline, H. T. Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863–1866 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lein, P., Johnson, M., Guo, X., Rueger, D. & Higgins, D. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15, 597–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. McAllister, A. K., Lo, D. C. & Katz, L. C. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. McAllister, A. K., Katz, L. C. & Lo, D. C. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17, 1057–1064 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Horch, H. W., Kruttgen, A., Portbury, S. D. & Katz, L. C. Destabilization of cortical dendrites and spines by BDNF. Neuron 23, 353–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Barbacid, M. Neurotrophic factors and their receptors. Curr. Opin. Cell Biol. 7, 148–155 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. McAllister, A. K., Katz, L. C. & Lo, D. C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Fryer, R. H. et al. Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J. Comp. Neurol. 374, 21–40 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Yacoubian, T. A. & Lo, D. C. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat. Neurosci. 3, 342–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Gundersen, R. W. & Barrett, J. N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science 206, 1079–1080 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Song, H. J. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Giger, R. J., Wolfer, D. P., De Wit, G. M. & Verhaagen, J. Anatomy of rat semaphorin III/collapsin-1 mRNA expression and relationship to developing nerve tracts during neuroembryogenesis. J. Comp. Neurol. 375, 378–392 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Polleux, F., Giger, R. J., Ginty, D. D., Kolodkin, A. L. & Ghosh, A. Patterning of cortical efferent projections by semaphorin-neuropilin interactions. Science 282, 1904–1906 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Gertler, F. B. et al. enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties. Genes Dev. 9, 521–533 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Wills, Z., Bateman, J., Korey, K. A., Comer, A. & Van Vactor, D. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 22, 301–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Lanier, L. M. & Gertler, F. B. From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr. Opin. Neurobiol. 10, 80–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Bray, D. Branching patterns of individual sympathetic neurons in culture. J. Cell Biol. 56, 702–712 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O'Leary, D. D. M. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods.” Neuron 1, 901–910 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, W., Ahmad, F. J. & Baas, P. W. Microtubule fragmentation and partitioning in the axon during collateral branch formation. J. Neurosci. 14, 5872–5884 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zakharenko, S. & Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 16, 1077–1086 (1998).

    Article  Google Scholar 

  43. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Redmond, L. & Ghosh, A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr. Opin. Neurobiol. 11, 111–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Z., Van Aelst, L. & Cline, H. T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat. Neurosci. 3, 217–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Wong, W. T., Faulkner-Jones, B., Sanes, J. R. & Wong, R. O. L. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024–5036 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luo, L. et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prokop, A., Uhler, J., Roote, J. & Bate, M. The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons. J. Cell Biol. 143, 1283–1294 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gregory, S. L. & Brown, N. H. Kakapo, a gene required for adhesion between and within cell layers in drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J. Cell Biol. 143, 1271–1282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strumpf, D. & Volk, T. Kakapo, a novel cytoskeletal-associated protein is essential for the restricted localization of the neuregulin-like factor, vein, at the muscle-tendon junction site. J. Cell Biol. 143, 1259–1270 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fuchs, E. & Yang, Y. Crossroads on cytoskeletal highways. Cell 98, 547–550 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Van Vactor, D., Sink, H., Fambrough, D., Tsoo, R. & Goodman, C. S. Genes that control neuromuscular specificity in Drosophila. Cell 73, 1137–1153 (1993).

    Article  CAS  Google Scholar 

  54. Kolodziej, P. A., Jan, L. Y. & Jan, Y. N. Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron 15, 273–286 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, S., Harris, K. L., Whitington, P. M. & Kolodziej, P. A. short stop is allelic to kakapo, and encodes rod-like cytoskeletal-associated proteins required for axon extension. J. Neurosci. 20, 1096–1108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Gao, F. B., Kohwi, M., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons. Neuron 28, 91–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Ruchhoeft, M. L., Ohnuma, S., McNeill, L., Holt, C. E. & Harris, W. A. The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J. Neurosci. 19, 8454–8463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, T., Winter, C., Marticke, S. S., Lee, A. & Luo, L. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25, 307–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kimura, K. et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273, 245–248 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell (in press).

  63. Hirose, M. et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J. Cell Biol. 141, 1625–1636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Redmond, L., Oh, S., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Altman, J. & Anderson, W. J. Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged x-irradiation started at birth. J. Comp. Neurol. 146, 355–406 (1972).

    Article  CAS  PubMed  Google Scholar 

  67. Rakic, P. & Sidman, R. L. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J. Comp. Neurol. 152, 133–162 (1973).

    Article  CAS  PubMed  Google Scholar 

  68. Baptista, C. A., Hatten, M. E., Blazeski, R. & Mason, C. A. Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12, 243–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Segal, I., Korkotian, I. & Murphy, D. D. Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci. 23, 53–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Morrison, M. E. & Mason, C. A. Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J. Neurosci. 18, 3563–3573 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirai, H. & Launey, T. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J. Neurosci. 20, 5217–5224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure of the Nervous System: Neurons and Their Supporting Cells (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  74. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Caceres, A., Mautino, J. & Kosik, K. S. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9, 607–618 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Sharp, D. J. et al. Identification of a microtubule-associated motor protein essential for dendritic differentiation. J. Cell Biol. 138, 833–843 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu, W. et al. Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J. Neurosci. 20, 5782–5791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat. Cell Biol. 2, 776–783 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nat. Cell Biol. 2, 767–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Niethammer, M. et al. Nudel is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Nikolic, M., Chou, M. M., Lu, W., Mayer, B. J. & Tsai, L. H. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Le Roux, P., Behar, S., Higgins, D. & Charette, M. OP-1 enhances dendritic growth from cerebral cortical neurons in vitro. Exp. Neurol. 160, 151–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Cantallops, I., Haas, K. & Cline, H. T. Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat. Neurosci. 3, 1004–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Davies, A. M. Neurotrophins: neurotrophic modulation of neurite growth. Curr. Biol. 10, R198–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Nakamura, F., Kalb, R. G. & Strittmatter, S. M. Molecular basis of semaphorin-mediated axon guidance. J. Neurobiol. 44, 219–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Atwal, J. K., Massie, B., Miller, F. D. & Kaplan, D. R. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Ichinose, T. & Snider, W. D. Differential effects of TrkC isoforms on sensory axon outgrowth. J. Neurosci. Res. 59, 365–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Giniger, E. A role for Abl in Notch signaling. Neuron 20, 667–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Bito, H. et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Pfister, K. K. Cytoplasmic dynein and microtubule transport in the axon: the action connection. Mol. Neurobiol. 20, 81–91 (2000).

    Article  Google Scholar 

  93. Zou, D. J. & Cline, H. T. Postsynaptic calcium/calmodulin-dependent protein kinase II is required to limit elaboration of presynaptic and postsynaptic neuronal arbors. J. Neurosci. 19, 8909–8918 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 14, 1583–1589 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941–953 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451–464 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y.-N. Jan, S. Smith, A. Goldstein and J. Ng for their comments on this review. Work in our lab is supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, E., Luo, L. How do dendrites take their shape?. Nat Neurosci 4, 359–365 (2001). https://doi.org/10.1038/86006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing