Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks

Abstract

The faithful production of rhythms by many neural circuits depends critically on the strengths of inhibitory synaptic connections. We propose a model in which the strengths of inhibitory synapses in a central pattern-generating circuit are subject to activity-dependent plasticity. The strength of each synapse is modified as a function of the global activity of the postsynaptic neuron and by correlated activity of the pre- and postsynaptic neurons. This allows the self-assembly, from random initial synaptic strengths, of two cells into reciprocal oscillation and three cells into a rhythmic triphasic motor pattern. This self-assembly illustrates that complex oscillatory circuits that depend on multiple inhibitory synaptic connections can be tuned via simple activity-dependent rules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3: Biological and model STG neurons.
Figure 1: Behavior at fixed coupling and activity-dependent modification of LP-LP two-cell circuit.
Figure 2: Behavior at fixed coupling and activity-dependent modification of AB/PD-AB/PD and AB/PD-LP two-cell circuits.
Figure 4: Synapse-specific term; development of triphasic rhythm in model three-cell network.
Figure 5: Convergence of synaptic strengths in the three-cell circuit from many initial values to a unique set of strengths via activity-dependent tuning (Equation 4).

Similar content being viewed by others

References

  1. Marder, E. & Calabrese, R. L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    Article  CAS  Google Scholar 

  2. Brown, T. G. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. (Lond.) 48, 18–46 (1914).

    Article  CAS  Google Scholar 

  3. Grillner, S., Parker, D. & el Manira, A. Vertebrate locomotion—a lamprey perspective. Ann. NY Acad. Sci. 860, 1–18 (1998).

    Article  CAS  Google Scholar 

  4. Sillar, K. T., Reith, C. A. & McDearmid, J. R. in Neuronal Mechanisms for Generating Locomotor Activity Vol. 860 (eds. Kiehn, O., Harris-Warrick, R. M., Jordan, L. M., Hultborn, H. & Kudo, N.) 318–332 (New York Academy of Sciences, New York, 1998).

    Google Scholar 

  5. Arbas, E. A. & Calabrese, R. L. Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech. J. Neurosci. 7, 3953–3960 (1987).

    Article  CAS  Google Scholar 

  6. Angstadt, J. D. & Calabrese, R. L. Calcium currents and graded synaptic transmission between heart interneurons of the leech. J. Neurosci. 11, 746–759 (1991).

    Article  CAS  Google Scholar 

  7. Nadim, F., Olsen, Ø. H., De Schutter, E. & Calabrese, R. L. Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. J. Comput. Neurosci. 2, 215–235 (1995).

    Article  CAS  Google Scholar 

  8. Olsen, Ø. H., Nadim, F. & Calabrese, R. L. Modeling the leech heartbeat elemental oscillator. II. Exploring the parameter space. J. Comput. Neurosci. 2, 237–257 (1995).

    Article  CAS  Google Scholar 

  9. Olsen, Ø. H. & Calabrese, R. L. Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms. J. Neurosci. 16, 4958–4970 (1996).

    Article  CAS  Google Scholar 

  10. Satterlie, R. A. Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science 229, 402–404 (1985).

    Article  CAS  Google Scholar 

  11. Friesen, W. O. Reciprocal inhibition: a mechanism underlying oscillatory animal movements. Neurosci. Biobehav. 18, 547–553 (1994).

    Article  CAS  Google Scholar 

  12. Hartline, D. K. & Gassie, D. V. Jr. Pattern generation in the lobster (Panulirus) stomatogastric ganglion. I. Pyloric neuron kinetics and synaptic interactions. Biol. Cybern. 33, 209–222 (1979).

    Article  CAS  Google Scholar 

  13. Harris-Warrick, R. M., Coniglio, L. M., Barazangi, N., Guckenheimer, J. & Gueron, S. Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15, 342–358 (1995).

    Article  CAS  Google Scholar 

  14. Harris-Warrick, R. M., Coniglio, L. M., Levini, R. M., Gueron, S. & Guckenheimer, J. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74, 1404–1420 (1995).

    Article  CAS  Google Scholar 

  15. Miller, J. P. & Selverston, A. I. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48, 1416–1432 (1982).

    Article  CAS  Google Scholar 

  16. Eisen, J. S. & Marder, E. A mechanism for production of phase shifts in a pattern generator. J. Neurophysiol. 51, 1375–1393 (1984).

    Article  CAS  Google Scholar 

  17. Marty, A. & Llano, I. Modulation of inhibitory synapses in the mammalian brain. Curr. Opin. Neurobiol. 5, 335–341 (1995).

    Article  CAS  Google Scholar 

  18. Korn, H., Oda, Y. & Faber, D. S. Long-term potentiation of inhibitory circuits and synapses in the central nervous system. Proc. Natl. Acad. Sci. USA 89, 440–443 (1992).

    Article  CAS  Google Scholar 

  19. Oda, Y., Charpier, S., Murayama, Y., Suma, C. & Korn, H. Long-term potentiation of glycinergic inhibitory synaptic transmission. J. Neurophysiol. 74, 1056–1074 (1995).

    Article  CAS  Google Scholar 

  20. Oda, Y., Kawasaki, K., Morita, M., Korn, H. & Matsui, H. Inhibitory long-term potentiation underlies auditory conditioning of goldfish escape behaviour. Nature 394, 182–185 (1998).

    Article  CAS  Google Scholar 

  21. Komatsu, Y. & Iwakiri, M. Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport 4, 907–910 (1993).

    Article  CAS  Google Scholar 

  22. Komatsu, Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 16, 6342–6352 (1996).

    Article  CAS  Google Scholar 

  23. Aizenman, C. D., Manis, P. B. & Linden, D. J. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21, 827–835 (1998).

    Article  CAS  Google Scholar 

  24. Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M. (eds.) Dynamic Biological Networks: The Stomatogastric Nervous System (MIT Press, Cambridge, Massachusetts, 1992).

    Google Scholar 

  25. Graubard, K., Raper, J. A. & Hartline, D. K. Graded synaptic transmission between spiking neurons. Proc. Natl. Acad. Sci. USA 77, 3733–3735 (1980).

    Article  CAS  Google Scholar 

  26. Graubard, K., Raper, J. A. & Hartline, D. K. Graded synaptic transmission between identified spiking neurons. J. Neurophysiol. 50, 508–521 (1983).

    Article  CAS  Google Scholar 

  27. Morris, C. & Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981).

    Article  CAS  Google Scholar 

  28. Skinner, F. K., Kopell, N. & Marder, E. Mechanisms for oscillation and frequency control in reciprocal inhibitory model neural networks. J. Comput. Neurosci. 1, 69–87 (1994).

    Article  CAS  Google Scholar 

  29. Wang, X.-J. & Rinzel, J. Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp. 4, 84–97 (1992).

    Article  Google Scholar 

  30. LeMasson, G., Marder, E. & Abbott, L. F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915–1917 (1993).

    Article  CAS  Google Scholar 

  31. Liu, Z., Golowasch, J., Marder, E. & Abbott, L. F. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18, 2309–2320 (1998).

    Article  CAS  Google Scholar 

  32. Siegel, M., Marder, E. & Abbott, L. F. Activity-dependent current distributions in model neurons. Proc. Natl. Acad. Sci. USA 91, 11308–11312 (1994).

    Article  CAS  Google Scholar 

  33. Hartline, D. K., Russell, D. F., Raper, J. A. & Graubard, K. Special cellular and synaptic mechanisms in motor pattern generation. Comp. Biochem. Physiol. 91C, 115–131 (1988).

    Google Scholar 

  34. Tierney, A. J. & Harris-Warrick, R. M. Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67, 599–609 (1992).

    Article  CAS  Google Scholar 

  35. Richards, K. S., Miller, W. L. & Marder, E. Maturation of the rhythmic activity produced by the stomatogastric ganglion of the lobster, Homarus americanus. J. Neurophysiol. 82, 2006–2009 (1999).

    Article  CAS  Google Scholar 

  36. Casasnovas, B. & Meyrand, P. Functional differentiation of adult neural circuits from a single embryonic network. J. Neurosci. 15, 5703–5718 (1995).

    Article  CAS  Google Scholar 

  37. O'Donovan, M. J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol. 9, 94–104 (1999).

    Article  CAS  Google Scholar 

  38. Golowasch, J., Casey, M., Abbott, L. F. & Marder, E. Network stability from activity-dependent regulation of neuronal conductances. Neural Comp. 11, 1079–1096 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by MH 46742, NS 07292 and the Sloan and Keck Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Thoroughman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto-Treviño, C., Thoroughman, K., Marder, E. et al. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nat Neurosci 4, 297–303 (2001). https://doi.org/10.1038/85147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing