Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new form of long-term depression in the perirhinal cortex

Abstract

We demonstrate a form of long-term depression (LTD) in the perirhinal cortex that relies on interaction between different glutamate receptors. Group II metabotropic glutamate (mGlu) receptors facilitated group I mGlu receptor-mediated increases in intracellular calcium. This facilitation plus NMDA receptor activation may be necessary for induction of LTD at resting membrane potentials. However, depolarization enhanced NMDA receptor function and removed the requirement of synergy between group I and group II mGlu receptors: under these conditions, activation of only NMDA and group I mGlu receptors was required for LTD. Such glutamate receptor interactions potentially provide new rules for synaptic plasticity. These forms of LTD occur in the perirhinal cortex, where long-term decreases in neuronal responsiveness may mediate recognition memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The perirhinal cortex.
Figure 2: LTD relies on activation of NMDA receptors and a postsynaptic increase in calcium.
Figure 3: LTD depends on group I but not group III mGlu receptor activation.
Figure 4: The role of group II mGlu receptors in LTD is voltage dependent.
Figure 5: The role of group II mGlu receptors in LTD is influenced by the level of NMDA receptor activation.
Figure 6: Group II mGlu receptor activation by DCG-IV enhances group I mGlu receptor (DHPG)-induced inward current and calcium mobilization.

Similar content being viewed by others

References

  1. Brown, M. W. & Xiang, J.-Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

    Article  CAS  Google Scholar 

  2. Meunier, M., Bachevalier, J., Mishkin, M. & Murray, B. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys J. Neurosci. 13, 5418–5432 (1993).

    Article  CAS  Google Scholar 

  3. Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1999).

    Article  Google Scholar 

  4. Corodimas, K. P. & Ledoux, J.E. Disruptive effects of posttraining perirhinal cortex lesions on conditioned fear: contributions of contextual cues Behav. Neurosci. 109, 613–619 (1995).

    Article  CAS  Google Scholar 

  5. Zhu, X. O. & Brown, M.W. Changes in neuronal activity related to the repetition and relative familiarity of visual stimuli in rhinal and adjacent cortex of the anesthetized rat. Brain Res. 689, 101–110 (1995).

    Article  CAS  Google Scholar 

  6. Zhu, X. O., McCabe, B. J., Aggleton, J. P. & Brown, M.W. Mapping visual recognition memory through expression of the immediate early gene c-fos. Neuroreport 7, 1871– 1875 (1996).

    Article  CAS  Google Scholar 

  7. Bear, M. F. & Malenka, R.C. Synaptic plasticity: LTP and LTD . Curr. Opin. Neurobiol. 4, 389– 399 (1994).

    Article  CAS  Google Scholar 

  8. Kerr, D. S. & Abraham, W.C. LTD: Many means to how many ends? Hippocampus 6, 30–34 (1996).

    Article  CAS  Google Scholar 

  9. Bear, M. F. & Abraham, W.C. Long-term depression in hippocampus . Annu. Rev. Neurosci. 19, 437– 462 (1996).

    Article  CAS  Google Scholar 

  10. Fujii, S., Saito, K., Miyakawa, H., Ito, K. & Kato, H. Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122 (1991).

    Article  CAS  Google Scholar 

  11. Mulkey, R. M. & Malenka, R.C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 ( 1992).

    Article  CAS  Google Scholar 

  12. Dudek, S. M. & Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367 (1992).

    Article  CAS  Google Scholar 

  13. Bashir, Z. I. & Collingridge, G.L. An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp. Brain Res. 100, 437–443 (1994).

    Article  CAS  Google Scholar 

  14. Bolshakov, V. Y. & Siegelbaum, S.A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264, 1148–1152 ( 1994).

    Article  CAS  Google Scholar 

  15. Oliet, S. H. R., Malenka, R. C. & Nicoll, R.A. Two distinct form of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982 (1997).

    Article  CAS  Google Scholar 

  16. Otani, S. & Connor, J.A. Requirement of rapid Ca2+ entry and synaptic activation of metabotropic glutamate receptors for the induction of long-term depression in adult rat hippocampus. J. Physiol. (Lond.) 511, 761–770 (1998).

    Article  CAS  Google Scholar 

  17. Fitzjohn, S. M. et al. The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity . Neuropharmacology 37, 1445– 1458 (1998).

    Article  CAS  Google Scholar 

  18. Mulkey, R. M., Herron, C. E. & Malenka, R.C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051– 1055 (1993).

    Article  CAS  Google Scholar 

  19. Pin, J.-P. & Duvoisin, R. The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 34, 1–26 (1995).

    Article  CAS  Google Scholar 

  20. Conn, P. J. & Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    Article  CAS  Google Scholar 

  21. Anwyl, R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res. Rev. 29, 83– 120 (1999).

    Article  CAS  Google Scholar 

  22. Reyes, M. & Stanton, P.K. Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J. Neurosci. 16, 5951–5960 (1996).

    Article  CAS  Google Scholar 

  23. Yokoi, M. et al. Impairment of hippocampal mossy fibre LTD in mice lacking mGluR2 . Science 273, 645–647 (1996).

    Article  CAS  Google Scholar 

  24. Domenici, M. R., Berretta, N. & Cherubini, E. Two distinct forms of long-term depression coexist at the mossy fiber-CA3 synapse in the hippocampus during development. Proc. Natl. Acad. Sci. USA 95, 8310– 8315 (1998).

    Article  CAS  Google Scholar 

  25. Tzounopoulos, T., Janz, R., Südhof, T. C., Nicoll, R. A. & Malenka, R.C. A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21, 837–845 (1998).

    Article  CAS  Google Scholar 

  26. Huang, L. Q., Rowan, M. J. & Anwyl, R. mGluR II agonist inhibition of LTP induction, and mGluR II antagonist inhibition of LTD induction, in the dentate gyrus in vitro . Neuroreport 8, 687– 693 (1997).

    Article  CAS  Google Scholar 

  27. Manahan-Vaughan, D. Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats. J. Neurosci. 17, 3303– 3311 (1997).

    Article  CAS  Google Scholar 

  28. Manahan-Vaughan, D. Priming of group 2 metabotropic glutamate receptors facilitates induction of long-term depression in the dentate gyrus of freely moving rats. Neuropharmacology 37, 1459–1464 (1998).

    Article  CAS  Google Scholar 

  29. Bilkey, D.K. Long-term potentiation in the in vitro perirhinal cortex displays associative properties. Brain Res. 733, 297– 300 (1996).

    Article  CAS  Google Scholar 

  30. Ziakopoulos, Z., Tillet, C. W., Brown, M. W. & Bashir, Z.I. Input- and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Neuroscience 92, 459– 472 (1999).

    Article  CAS  Google Scholar 

  31. Eaton, S. A. et al. Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxyphenylglycine and (R,S)-α-methyl-4-carboxyphenylglycine . Eur. J. Pharmacol. 244, 195– 197 (1993).

    Article  CAS  Google Scholar 

  32. Bashir, Z. I. et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350 (1993).

    Article  CAS  Google Scholar 

  33. Pellicciari, R. et al. 1-aminoindan-1,5-dicarboxylic acid: a novel antagonist at phosholipase C-linked metabotropic glutamate receptors. J. Med. Chem. 38, 3717–3719 ( 1995).

    Article  CAS  Google Scholar 

  34. Moroni, F. et al. Pharmacological characterization of 1-aminoindan-1,5-dicarboxylic acid, a potent mGluR1 antagonist. J. Pharmacol. Exp. Ther. 281, 721–729 (1997).

    CAS  PubMed  Google Scholar 

  35. Salt, T. E. & Eaton, S.A. Distinct presynaptic metabotropic receptors for l-AP4 and CCG1 on GABAergic terminals: pharmacological evidence using novel α-methyl derivative mGluR antagonists, MAP4 and MCCG, in the rat thalamus in vivo. Neuroscience 65, 5–13 (1995).

    Article  CAS  Google Scholar 

  36. McCaffery, B. et al. Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. Neuroscience 93, 977–984 (1999).

    Article  CAS  Google Scholar 

  37. Ito, I. et al. 3,5-Dihydroxyphenylglycine: a potent agonist of metabotropic glutamate receptors. Neuroreport 3, 1013– 1016 (1992).

    Article  CAS  Google Scholar 

  38. Wilsch, V. W., Pidoplichko, V. I., Opitz, T., Shinozaki, H. & Reymann, K.G. Metabotropic glutamate receptor agonist DCG-IV as NMDA receptor agonist in immature rat hippocampal neurones . Eur. J. Pharmacol. 262, 287– 291 (1994).

    Article  CAS  Google Scholar 

  39. Scanziani, M., Salin, P. A., Vogt, K. E., Malenka, R. C. & Nicoll, R.A. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385, 630–634 ( 1997).

    Article  CAS  Google Scholar 

  40. Schoepp, D. D. et al. The novel metabotropic glutamate receptor agonist 2R,4 R- APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5–dihydroxyphenylglycine: Evidence for a synergistic interaction between group 1 and group 2 receptors. Neuropharmacology 35, 1661–1672 ( 1996).

    Article  CAS  Google Scholar 

  41. Mistry, R., Golding, N. & Challiss, R.A.J. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II-selective metabotropic glutamate receptor agonists. Br. J. Pharmacol. 123, 581– 589 (1998).

    Article  CAS  Google Scholar 

  42. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurones is regulated by an NSF-dependent mechanisms. Neuron 23, 365–376 (1999).

    Article  CAS  Google Scholar 

  43. Doherty, A. J., Collingridge, G. L. & Jane, D.E. Antagonist activity of α-substituted 4-carboxyphenylglycine analogues at group I metabotropic glutamate receptors expressed in CHO cells . Br. J. Pharmacol. 126, 205– 210 (1999).

    Article  CAS  Google Scholar 

  44. Burwell, R. D., Witter, M. P. & Amaral, D.G. Perirhinal and postrhinal cortices of the rat: A review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5, 390– 408 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Doherty, L. Pickard and V. Collett for help with cell culture and calcium imaging and G.L. Collingridge for discussions. This work was supported by the BBSRC, MRC and Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. I. Bashir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K., Kemp, N., Noel, J. et al. A new form of long-term depression in the perirhinal cortex. Nat Neurosci 3, 150–156 (2000). https://doi.org/10.1038/72093

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing