Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The seven-transmembrane receptor Smoothened cell-autonomously induces multiple ventral cell types

Abstract

Sonic Hedgehog (Shh) is a secreted protein that controls cell fate and mitogenesis in the developing nervous system. Here we show that a constitutively active form of Smoothened (Smo-M2) mimics concentration-dependent actions of Shh in the developing neural tube, including activation of ventral marker genes (HNF3β, patched, Nkx2.2, netrin-1), suppression of dorsal markers (Pax-3, Gli-3, Ephrin A5) and induction of ventral neurons (dopaminergic, serotonergic) and ventrolateral motor neurons (Islet-1+, Islet-2+, HB9+) and interneurons (Engrailed-1+, CHX10+). Furthermore, Smo-M2's patterning activities were cell autonomous, occurring exclusively in cells expressing Smo-M2. These findings suggest that Smo is a key signaling component in the Hh receptor and that Shh patterns the vertebrate nervous system as a morphogen, rather than through secondary relay signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Smo-M2 ventralizes the neural tube in transgenic mice.
Figure 2: Induction of multiple neuronal classes and netrin-1, in Smo-M2 TG mice.
Figure 3: Changes in gene expression in the midbrain/hindbrain region are confined to the Smo-M2 expression domain.
Figure 4: Smo-M2 induces Islet-1+ motor neurons cell autonomously in the mid/hindbrain region.
Figure 5: Smo-M2 induces ventral and ventrolateral markers and cell types in the spinal cord.

Similar content being viewed by others

References

  1. Belloni, E. et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat. Genet. 14, 353–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat. Genet. 14, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 382, 407–413 (1996).

    Article  Google Scholar 

  4. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115 –1123 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Hynes, M. et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19, 15–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Ericson, J. et al. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  7. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Goodrich, L. V., Johnson, R. L., Milenkovic, L., McMahon, J. A. & Scott, M. P. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev. 10, 301– 312 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425– 435 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Yamada, T., Placzek, M., Tanaka, H., Dodd, J. & Jessell, T. M. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Hynes, M. et al. Induction of midbrain dopaminergic neurons by Sonic Hedgehog. Neuron 80, 95–101 (1995).

    CAS  Google Scholar 

  13. Wang, M. Z. et al. Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat. Med. 1, 1184–1188 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Marigo, V., Johnson, R. L., Vortkamp, A. & Tabin, C. J. Sonic hedgehog differentially regulates expression of Gli and Gli3 during limb development. Dev. Biol. 180, 273– 283 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129– 134 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J. E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. van den Heuvel, M. & Ingham, P. W. smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature 382, 547–551 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Ingham, P. W., Taylor, A. M. & Nakano, Y. Role of the Drosophila patched gene in positional signalling. Nature 353, 184– 187 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Goodrich, L. V., Milenkovic, K. M., Higgins, L. & Scott, M. P. Altered cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Y. & Struhl, G. In vivo evidence that Patched and Smoothened constitute distinct binding and transducing components of a Hedgehog receptor complex. Development 125, 4943–4948 (1998).

    CAS  PubMed  Google Scholar 

  21. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90– 92 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553– 563 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, R. L., Grenier, J. K. & Scott, M. P. Patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161– 4170 (1995).

    CAS  PubMed  Google Scholar 

  25. Yang, Y. et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 124, 4393–4404 ( 1997).

    CAS  PubMed  Google Scholar 

  26. Perrimon, N. Hedgehog and beyond. Cell 80, 517– 520 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Struhl, G., Barbash, D. A. & Lawrence, P. A. Hedgehog acts by distinct gradient and signal relay mechanisms to organise cell type and cell polarity in the Drosophila. Development 124, 2155–2165 (1997).

    CAS  PubMed  Google Scholar 

  28. Heemskerk, J. & DiNardo, S. Drosophila hedgehog acts as a morphogen in cellular patterning. Cell 76, 449– 460 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Sasaki, H. & Hogan, B. L. M. HNF-3β as a regulator of floor plate development. Cell 76, 103 –115 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Murone, M., Rosenthal, A. & de Sauvage, F. J. Sonic hedgehog signaling by the patched-smoothened receptor complex. Curr. Biol. 9, 76– 84 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  33. Davis, C. A. & Joyner, A. L. Expression patterns of the homeobox containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during mouse development. Genes Dev. 2, 1736–1744 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Davis, C. A., Noble-Topham, S. E., Rossant, J. & Joyner, A. L. Expression patterns of the homeobox containing gene en-2 delineates a specific region in the developing mouse brain. Genes Dev. 2, 361–371 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Tremblay, P., Pituello, F. & Gruss, P. Inhibition of floor plate differentiation by pax3: evidence from ectopic expression in transgenic mice. Development 122, 2555–2567 (1996).

    CAS  PubMed  Google Scholar 

  36. Winslow, J. W. et al. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14, 973–981 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Ruiz i Altaba, A. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125, 2203– 2212 (1998).

    PubMed  Google Scholar 

  38. Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. & Tabin, C. J. Biochemical evidence that Patched is the Hedgehog receptor. Nature 384, 176– 179 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Marigo, V., Scott, M. P., Johnson, R. L., Goodrich, L. V. & Tabin, C. J. Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122, 1225– 1233 (1996).

    CAS  PubMed  Google Scholar 

  40. Roelink, H. et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  41. Krauss, S., Concordet, J.-P. & Ingham, P. W. A functionally conserved homolog of the drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431– 1444 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the limb. Cell 75, 1401–1416 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  43. Hynes, M., Poulsen, K., Tessier-Lavigne, M. & Rosenthal, A. Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 80, 95–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A. & Rosenthal, A. FGF8 and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Specht, L. A., Pickel, V. M., Joh, T. H. & Reis, D. J. Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J. Comp. Neurol. 199, 255–276 (1981).

    Article  CAS  PubMed  Google Scholar 

  46. Parent, A. in Serotonin Neurotransmission and Behavior (eds. Jacobs, B. L. & Gelperin, A.) 3–34 (MIT Press, Cambridge, Massachusetts, 1981).

    Google Scholar 

  47. Pfaff, S. & Kintner, C. Neuronal diversification: development of motor neuron subtypes. Curr. Opin. Neurobiol. 8, 27–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 659–674 ( 1999).

    Article  Google Scholar 

  50. Sasaki, H., Hui, C.-C., Nakafuku, M. & Kondoh, H. A binding site of Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124, 1313–1322 ( 1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kenji Shimamura for help with the electroporation, Susan Brenner-Morton and T. Jessell for the Islet-1, En-1, Chx-10 and HB9 antibodies and A. Ruiz i Altaba for the HNF-3β antiserum. We also thank E. Berry and A. Bruce for help with preparation of the manuscript and A. Shih and K. Poulsen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary Hynes or Arnon Rosenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hynes, M., Ye, W., Wang, K. et al. The seven-transmembrane receptor Smoothened cell-autonomously induces multiple ventral cell types. Nat Neurosci 3, 41–46 (2000). https://doi.org/10.1038/71114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing