Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons

This article has been updated

Abstract

Gamma-frequency oscillations depend on phasic synaptic GABAA receptor (GABAAR)-mediated inhibition to synchronize spike timing. The spillover of synaptically released GABA can also activate extrasynaptic GABAARs, and such tonic inhibition may also contribute to modulating network dynamics. In many neuronal cell types, tonic inhibition is mediated by δ subunit–containing GABAARs. We found that the frequency of in vitro cholinergically induced gamma oscillations in the mouse hippocampal CA3 region was increased by the activation of NMDA receptors (NMDARs) on interneurons. The NMDAR-dependent increase of gamma oscillation frequency was counteracted by the tonic inhibition of the interneurons mediated by δ subunit–containing GABAARs. Recordings of synaptic currents during gamma activity revealed that NMDAR-mediated increases in oscillation frequency correlated with a progressive synchronization of phasic excitation and inhibition in the network. Thus, the balance between tonic excitation and tonic inhibition of interneurons may modulate gamma frequency by shaping interneuronal synchronization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cholinergic activation induces high-frequency γ oscillations in hippocampal slices from adult Gabrd−/− mice.
Figure 2: Hippocampal CA3 interneurons are disinhibited in adult Gabrd−/− mice.
Figure 3: Hippocampal CA3 interneurons in adult Gabrd−/− mice are more sensitive to NMDAR-mediated excitation.
Figure 4: Activation of NMDAR increases the frequency of cholinergically induced γ oscillations in juvenile slices.
Figure 5: High-frequency γ oscillations depend on AMPAR-mediated excitation.
Figure 6: The lag between synaptic inhibition and excitation disappears as the γ oscillation frequency increases.

Similar content being viewed by others

Change history

  • 27 December 2009

    In the version of this article initially published, the first name of the corresponding author was misspelled. The correct name is "Istvan Mody." This has been corrected in all versions of the article.

References

  1. Csicsvari, J., Jamieson, B., Wise, K.D. & Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322 (2003).

    Article  CAS  Google Scholar 

  2. Hasenstaub, A. et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005).

    Article  CAS  Google Scholar 

  3. Steriade, M., Amzica, F. & Contreras, D. Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16, 392–417 (1996).

    Article  CAS  Google Scholar 

  4. Singer, W. Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  Google Scholar 

  5. Montgomery, S.M. & Buzsaki, G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci. USA 104, 14495–14500 (2007).

    Article  CAS  Google Scholar 

  6. Fell, J. et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat. Neurosci. 4, 1259–1264 (2001).

    Article  CAS  Google Scholar 

  7. Lisman, J.E. & Idiart, M.A. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    Article  CAS  Google Scholar 

  8. Fisahn, A., Pike, F.G., Buhl, E.H. & Paulsen, O. Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394, 186–189 (1998).

    Article  CAS  Google Scholar 

  9. Traub, R.D. et al. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12, 4093–4106 (2000).

    Article  CAS  Google Scholar 

  10. Vida, I., Bartos, M. & Jonas, P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49, 107–117 (2006).

    Article  CAS  Google Scholar 

  11. Whittington, M.A., Traub, R.D. & Jefferys, J.G. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995).

    Article  CAS  Google Scholar 

  12. Mann, E.O. & Paulsen, O. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci. 30, 343–349 (2007).

    Article  CAS  Google Scholar 

  13. Wang, X.J. & Buzsaki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996).

    Article  CAS  Google Scholar 

  14. Brunel, N. & Wang, X.J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003).

    Article  Google Scholar 

  15. Bragin, A. et al. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60 (1995).

    Article  CAS  Google Scholar 

  16. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A. & Buzsaki, G. Fast network oscillations in the hippocampal CA1 region of the behaving rat. J. Neurosci. 19, RC20 (1999).

    Article  CAS  Google Scholar 

  17. Hájos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).

    Article  Google Scholar 

  18. Hájos, N. et al. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J. Neurosci. 24, 9127–9137 (2004).

    Article  Google Scholar 

  19. Mann, E.O., Suckling, J.M., Hajos, N., Greenfield, S.A. & Paulsen, O. Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45, 105–117 (2005).

    Article  CAS  Google Scholar 

  20. Oren, I., Mann, E.O., Paulsen, O. & Hajos, N. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J. Neurosci. 26, 9923–9934 (2006).

    Article  CAS  Google Scholar 

  21. Fisahn, A. et al. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J. Neurosci. 24, 9658–9668 (2004).

    Article  CAS  Google Scholar 

  22. Fuchs, E.C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007).

    Article  CAS  Google Scholar 

  23. Hormuzdi, S.G. et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36–deficient mice. Neuron 31, 487–495 (2001).

    Article  CAS  Google Scholar 

  24. Wulff, P. et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc. Natl. Acad. Sci. USA 106, 3561–3566 (2009).

    Article  CAS  Google Scholar 

  25. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    Article  CAS  Google Scholar 

  26. Glykys, J. & Mody, I. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J. Physiol. (Lond.) 582, 1163–1178 (2007).

    Article  CAS  Google Scholar 

  27. Semyanov, A., Walker, M.C. & Kullmann, D.M. GABA uptake regulates cortical excitability via cell type–specific tonic inhibition. Nat. Neurosci. 6, 484–490 (2003).

    Article  CAS  Google Scholar 

  28. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).

    Article  CAS  Google Scholar 

  29. Semyanov, A., Walker, M.C., Kullmann, D.M. & Silver, R.A. Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004).

    Article  CAS  Google Scholar 

  30. Glykys, J., Mann, E.O. & Mody, I. Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J. Neurosci. 28, 1421–1426 (2008).

    Article  CAS  Google Scholar 

  31. Towers, S.K. et al. Alpha 5 subunit-containing GABAA receptors affect the dynamic range of mouse hippocampal kainate-induced gamma frequency oscillations in vitro. J. Physiol. (Lond.) 559, 721–728 (2004).

    Article  CAS  Google Scholar 

  32. Glykys, J. & Mody, I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56, 763–770 (2007).

    Article  CAS  Google Scholar 

  33. Peng, Z. et al. GABA(A) receptor changes in delta subunit-deficient mice: altered expression of alpha4 and gamma2 subunits in the forebrain. J. Comp. Neurol. 446, 179–197 (2002).

    Article  CAS  Google Scholar 

  34. Lamsa, K., Irvine, E.E., Giese, K.P. & Kullmann, D.M. NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. J. Physiol. (Lond.) 584, 885–894 (2007).

    Article  CAS  Google Scholar 

  35. Hrabetova, S. et al. Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J. Neurosci. 20, RC81 (2000).

    Article  CAS  Google Scholar 

  36. Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. & Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

    Article  CAS  Google Scholar 

  37. Standaert, D.G., Landwehrmeyer, G.B., Kerner, J.A., Penney, J.B. Jr. & Young, A.B. Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Brain Res. Mol. Brain Res. 42, 89–102 (1996).

    Article  CAS  Google Scholar 

  38. MacDonald, J.F. et al. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J. Physiol. (Lond.) 432, 483–508 (1991).

    Article  CAS  Google Scholar 

  39. Laurie, D.J., Wisden, W. & Seeburg, P.H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172 (1992).

    Article  CAS  Google Scholar 

  40. Alle, H. & Geiger, J.R. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    Article  CAS  Google Scholar 

  41. Banke, T.G. & McBain, C.J. GABAergic input onto CA3 hippocampal interneurons remains shunting throughout development. J. Neurosci. 26, 11720–11725 (2006).

    Article  CAS  Google Scholar 

  42. Trigo, F.F., Marty, A. & Stell, B.M. Axonal GABAA receptors. Eur. J. Neurosci. 28, 841–848 (2008).

    Article  Google Scholar 

  43. Mitchell, S.J. & Silver, R.A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003).

    Article  CAS  Google Scholar 

  44. Lozovaya, N.A. et al. Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape 'superslow' afterburst EPSC in rat hippocampus. J. Physiol. (Lond.) 558, 451–463 (2004).

    Article  CAS  Google Scholar 

  45. Harney, S.C., Jane, D.E. & Anwyl, R. Extrasynaptic NR2D-containing NMDARs are recruited to the synapse during LTP of NMDAR-EPSCs. J. Neurosci. 28, 11685–11694 (2008).

    Article  CAS  Google Scholar 

  46. Misra, C., Brickley, S.G., Farrant, M. & Cull-Candy, S.G. Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J. Physiol. (Lond.) 524, 147–162 (2000).

    Article  CAS  Google Scholar 

  47. Middleton, S. et al. NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex. Proc. Natl. Acad. Sci. USA 105, 18572–18577 (2008).

    Article  CAS  Google Scholar 

  48. Tukker, J.J., Fuentealba, P., Hartwich, K., Somogyi, P. & Klausberger, T. Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J. Neurosci. 27, 8184–8189 (2007).

    Article  CAS  Google Scholar 

  49. Nagy, J. Alcohol-related changes in regulation of NMDA receptor functions. Curr. Neuropharmacol. 6, 39–54 (2008).

    Article  CAS  Google Scholar 

  50. Zar, J.H. Biostatistical Analysis (Prentice Hall, Upper Saddle River, New Jersey, 1999).

Download references

Acknowledgements

This research was funded by a Epilepsy Foundation Postdoctoral Fellowship to E.O.M. and US National Institutes of Health grants NS30549 and NS02808 and the Coelho Endowment to I.M.

Author information

Authors and Affiliations

Authors

Contributions

E.O.M. conducted the experiments and analysis. I.M. supervised the project. E.O.M. and I.M. wrote the manuscript.

Corresponding author

Correspondence to Istvan Mody.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, E., Mody, I. Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons. Nat Neurosci 13, 205–212 (2010). https://doi.org/10.1038/nn.2464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing