Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system

Abstract

Axonal maturation and myelination are essential processes for establishing an efficient neuronal signaling network. We found that nardilysin (N-arginine dibasic convertase, also known as Nrd1 and NRDc), a metalloendopeptidase enhancer of protein ectodomain shedding, is a critical regulator of these processes. Nrd1−/− mice had smaller brains and a thin cerebral cortex, in which there were less myelinated fibers with thinner myelin sheaths and smaller axon diameters. We also found hypomyelination in the peripheral nervous system (PNS) of Nrd1−/− mice. Neuron-specific overexpression of NRDc induced hypermyelination, indicating that the level of neuronal NRDc regulates myelin thickness. Consistent with these findings, Nrd1−/− mice had impaired motor activities and cognitive deficits. Furthermore, NRDc enhanced ectodomain shedding of neuregulin1 (NRG1), which is a master regulator of myelination in the PNS. On the basis of these data, we propose that NRDc regulates axonal maturation and myelination in the CNS and PNS, in part, through the modulation of NRG1 shedding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of NRDc in brains and gross CNS phenotypes of Nrd1−/− mice.
Figure 2: Impaired axonal maturation and hypomyelination in the CNS of Nrd1−/− mice.
Figure 3: Delay in the initiation of myelination and hypomyelination in Nrd1−/− mice.
Figure 4: Impaired axonal maturation and hypomyelination in the PNS of Nrd1−/− mice.
Figure 5: Intermediate CNS phenotype in Nrd1+/ mice.
Figure 6: Transgenic overexpression of neuronal NRDc induces hypermyelination in the CNS.
Figure 7: Impaired motor activity and cognitive deficits in Nrd1−/− mice.
Figure 8: NRDc regulates NRG1 shedding through BACE1 and TACE.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nave, K.A. & Trapp, B.D. Axon-glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    Article  CAS  Google Scholar 

  2. Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17, 533–540 (2007).

    Article  CAS  Google Scholar 

  3. Hartline, D.K. & Colman, D.R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17, R29–R35 (2007).

    Article  CAS  Google Scholar 

  4. McTigue, D.M. & Tripathi, R.B. The life, death, and replacement of oligodendrocytes in the adult CNS. J. Neurochem. 107, 1–19 (2008).

    Article  CAS  Google Scholar 

  5. Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).

    Article  CAS  Google Scholar 

  6. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    Article  CAS  Google Scholar 

  7. Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    Article  CAS  Google Scholar 

  8. Nave, K.A. & Salzer, J.L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).

    Article  CAS  Google Scholar 

  9. Mei, L. & Xiong, W.C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 9, 437–452 (2008).

    Article  CAS  Google Scholar 

  10. Falls, D.L. Neuregulins: functions, forms and signaling strategies. Exp. Cell Res. 284, 14–30 (2003).

    Article  CAS  Google Scholar 

  11. Montero, J.C., Yuste, L., Diaz-Rodriguez, E., Esparis-Ogando, A. & Pandiella, A. Differential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor alpha–converting enzyme. Mol. Cell. Neurosci. 16, 631–648 (2000).

    Article  CAS  Google Scholar 

  12. Shirakabe, K., Wakatsuki, S., Kurisaki, T. & Fujisawa-Sehara, A. Roles of Meltrin beta/ADAM19 in the processing of neuregulin. J. Biol. Chem. 276, 9352–9358 (2001).

    Article  CAS  Google Scholar 

  13. Willem, M. et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science 314, 664–666 (2006).

    Article  CAS  Google Scholar 

  14. Hu, X. et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci. 9, 1520–1525 (2006).

    Article  CAS  Google Scholar 

  15. Hu, X. et al. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J. 22, 2970–2980 (2008).

    Article  CAS  Google Scholar 

  16. Pierotti, A.R. et al. N-arginine dibasic convertase, a metalloendopeptidase as a prototype of a class of processing enzymes. Proc. Natl. Acad. Sci. USA 91, 6078–6082 (1994).

    Article  CAS  Google Scholar 

  17. Chesneau, V. et al. N-arginine dibasic convertase (NRD convertase): a newcomer to the family of processing endopeptidases. An overview. Biochimie 76, 234–240 (1994).

    Article  CAS  Google Scholar 

  18. Nishi, E., Prat, A., Hospital, V., Elenius, K. & Klagsbrun, M. N-arginine dibasic convertase is a specific receptor for heparin-binding EGF-like growth factor that mediates cell migration. EMBO J. 20, 3342–3350 (2001).

    Article  CAS  Google Scholar 

  19. Nishi, E., Hiraoka, Y., Yoshida, K., Okawa, K. & Kita, T. Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor–like growth factor through activation of tumor necrosis factor alpha–converting enzyme. J. Biol. Chem. 281, 31164–31172 (2006).

    Article  CAS  Google Scholar 

  20. Hiraoka, Y. et al. Enhancement of alpha-secretase cleavage of amyloid precursor protein by a metalloendopeptidase nardilysin. J. Neurochem. 102, 1595–1605 (2007).

    Article  CAS  Google Scholar 

  21. Hiraoka, Y. et al. Ectodomain shedding of TNF-alpha is enhanced by nardilysin via activation of ADAM proteases. Biochem. Biophys. Res. Commun. 370, 154–158 (2008).

    Article  CAS  Google Scholar 

  22. Bernstein, H.G. et al. Histochemical evidence for wide expression of the metalloendopeptidase nardilysin in human brain neurons. Neuroscience 146, 1513–1523 (2007).

    Article  CAS  Google Scholar 

  23. Lu, Q.R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  Google Scholar 

  24. Fields, R.D. & Ellisman, M.H. Axons regenerated through silicone tube splices. II. Functional morphology. Exp. Neurol. 92, 61–74 (1986).

    Article  CAS  Google Scholar 

  25. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).

    Article  CAS  Google Scholar 

  26. Mayford, M., Wang, J., Kandel, E.R. & O'Dell, T.J. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81, 891–904 (1995).

    Article  CAS  Google Scholar 

  27. Dragatsis, I. & Zeitlin, S. CaMKIIalpha-Cre transgene expression and recombination patterns in the mouse brain. Genesis 26, 133–135 (2000).

    Article  CAS  Google Scholar 

  28. Yamasaki, N. et al. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 1, 6 (2008).

    Article  Google Scholar 

  29. Carter, R.J. et al. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J. Neurosci. 19, 3248–3257 (1999).

    Article  CAS  Google Scholar 

  30. Takao, K. et al. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 1, 11 (2008).

    Article  Google Scholar 

  31. Thinakaran, G. & Koo, E.H. Amyloid precursor protein trafficking, processing and function. J. Biol. Chem. 283, 29615–29619 (2008).

    Article  CAS  Google Scholar 

  32. Calaora, V. et al. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J. Neurosci. 21, 4740–4751 (2001).

    Article  CAS  Google Scholar 

  33. Wakatsuki, S., Yumoto, N., Komatsu, K., Araki, T. & Sehara-Fujisawa, A. Roles of meltrin-beta/ADAM19 in progression of Schwann cell differentiation and myelination during sciatic nerve regeneration. J. Biol. Chem. 284, 2957–2966 (2009).

    Article  CAS  Google Scholar 

  34. Taveggia, C. et al. Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56, 284–293 (2008).

    Article  Google Scholar 

  35. Brinkmann, B.G. et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59, 581–595 (2008).

    Article  CAS  Google Scholar 

  36. Trapp, B.D. & Nave, K.A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    Article  CAS  Google Scholar 

  37. Yagi, T. et al. A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 214, 70–76 (1993).

    Article  CAS  Google Scholar 

  38. Todaro, G.J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

    Article  CAS  Google Scholar 

  39. Hospital, V. et al. The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor–like growth factor (HB-EGF). Biochem. J. 367, 229–238 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Nishimoto and H. Nakabayashi for technical assistance, and K. Matsumoto, E. Kimura, A. Kinoshita and A. Sehara for materials. We thank P.W. Park, T. Nishio, H. Fujiwara, T. Kaneko, F. Fujiyama and H. Kawasaki for critical reading of the manuscript. This study was supported by research grants (19041035, 20390255, 20659061, 20200068 and IBR-shien) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. It was also supported by the Takeda Science Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Suzuken Memorial Foundation, the Japan Health Foundation and the Daiichi Sankyo Sponsored Research Program.

Author information

Authors and Affiliations

Authors

Contributions

M.O. and E.N. planned the experiments and wrote the manuscript. M.O., Y.H., T.M. and E.N. performed the experiments. H.T. carried out the histological procedures. K.T. and T.M. performed behavioral analysis. N.O. and H.K. generated the Nrd1−/− mice. T. Kimura and T. Kita supervised the work.

Corresponding author

Correspondence to Eiichiro Nishi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 5569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, M., Hiraoka, Y., Matsuoka, T. et al. Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat Neurosci 12, 1506–1513 (2009). https://doi.org/10.1038/nn.2438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing