Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors

Abstract

The fate of cortical progenitors, which progressively generate neurons and glial cells during development, is determined by temporally and spatially regulated signaling mechanisms. We found that the transcription factor Sip1 (Zfhx1b), which is produced at high levels in postmitotic neocortical neurons, regulates progenitor fate non–cell autonomously. Conditional deletion of Sip1 in young neurons induced premature production of upper-layer neurons at the expense of deep layers, precocious and increased generation of glial precursors, and enhanced postnatal astrocytogenesis. The premature upper-layer generation coincided with overexpression of the neurotrophin-3 (Ntf3) gene and upregulation of fibroblast growth factor 9 (Fgf9) gene expression preceded precocious gliogenesis. Exogenous application of Fgf9 to mouse cortical slices induced excessive generation of glial precursors in the germinal zone. Our data suggest that Sip1 restrains the production of signaling factors in postmitotic neurons that feed back to progenitors to regulate the timing of cell fate switch and the number of neurons and glial cells throughout corticogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Sip1 in the embryonic neocortex.
Figure 2: Sip1-deprived neocortex contains excessive numbers of upper layer neurons at the expense of deep layer neurons whilst maintaining their relative position within the neocortex.
Figure 3: Sip1 deletion in neocortical postmitotic cells causes premature generation of layer 2–5 neurons.
Figure 4: Enhanced astrocytic proliferation and premature and increased gliogenesis in Sip1 conditional mutants.
Figure 5: Ntf3 and Fgf9 steady-state mRNA levels are upregulated in the embryonic neocortex in the absence of Sip1.
Figure 6: Fgf9 can induce increased production of Olig2-expressing glial progenitors in wild-type forebrain slices in vitro.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Williams, B.P. & Price, J. Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron 14, 1181–1188 (1995).

    Article  CAS  Google Scholar 

  2. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  3. Desai, A.R. & McConnell, S. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

    CAS  Google Scholar 

  4. Morrow, T., Song, M.-R. & Ghosh, A. Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development 128, 3585–3594 (2001).

    CAS  PubMed  Google Scholar 

  5. Bayer, S.A. & Altman, J. Neocortical Development (Raven Press, New York, 1991).

  6. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  CAS  Google Scholar 

  7. McConnell, S.K. Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci. 8, 945–974 (1988).

    Article  CAS  Google Scholar 

  8. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    Article  CAS  Google Scholar 

  9. Barnabé-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    Article  Google Scholar 

  10. Verschueren, K. et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J. Biol. Chem. 274, 20489–20498 (1999).

    Article  CAS  Google Scholar 

  11. Verstappen, G. et al. Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Hum. Mol. Genet. 17, 1175–1183 (2008).

    Article  CAS  Google Scholar 

  12. van Grunsven, L.A. et al. Delta-EF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Dev. Dyn. 235, 1491–1500 (2006).

    Article  CAS  Google Scholar 

  13. Dastot-Le Moal, F. et al. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum. Mutat. 28, 313–321 (2007).

    Article  CAS  Google Scholar 

  14. Van de Putte, T. et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein- 1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am. J. Hum. Genet. 72, 465–470 (2003).

    Article  CAS  Google Scholar 

  15. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  Google Scholar 

  16. Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of Nex-cre mice. Genesis 44, 611–621 (2006).

    Article  CAS  Google Scholar 

  17. Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    Article  CAS  Google Scholar 

  18. Miquelajauregui, A. et al. Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proc. Natl. Acad. Sci. USA 104, 12919–12924 (2007).

    Article  CAS  Google Scholar 

  19. Higashi, Y. et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis 32, 82–84 (2002).

    Article  CAS  Google Scholar 

  20. Wu, S.-X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl. Acad. Sci. USA 102, 17172–17177 (2005).

    Article  CAS  Google Scholar 

  21. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  22. Arnold, S.J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 22, 2479–2484 (2008).

    Article  CAS  Google Scholar 

  23. Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  Google Scholar 

  24. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  Google Scholar 

  25. Remacle, J.E. et al. New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J. 18, 5073–5084 (1999).

    Article  CAS  Google Scholar 

  26. Huang, E.J. & Reichardt, L.F. Trk receptors: roles in neuronal signaling. Annu. Rev. Biochem. 72, 609–642 (2003).

    Article  CAS  Google Scholar 

  27. Eswarakumar, V.P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149 (2005).

    Article  CAS  Google Scholar 

  28. Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000).

    Article  CAS  Google Scholar 

  29. Grosskortenhaus, R., Pearson, B.J., Marusich, A. & Doe, C.Q. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell 8, 193–202 (2005).

    Article  CAS  Google Scholar 

  30. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    Article  CAS  Google Scholar 

  31. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  Google Scholar 

  32. Fukumitsu, H. et al. Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J. Neurosci. 26, 13218–13230 (2006).

    Article  CAS  Google Scholar 

  33. Belliveau, M.J. & Cepko, C. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126, 555–566 (1999).

    CAS  PubMed  Google Scholar 

  34. Neophytou, C., Vernallis, A., Smith, A. & Raff, M. Muller cell–derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development. Development 124, 2345–2354 (1997).

    CAS  PubMed  Google Scholar 

  35. Zhang, X.M. & Yang, X. Regulation of retinal ganglion cell production by Sonic hedgehog. Development 128, 943–957 (2001).

    CAS  PubMed  Google Scholar 

  36. Waid, D.K. & McLoon, S. Ganglion cells influence the fate of dividing retinal cells in culture. Development 125, 1059–1066 (1998).

    CAS  PubMed  Google Scholar 

  37. Pearson, B.J. & Doe, C.Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647 (2004).

    Article  CAS  Google Scholar 

  38. Bullough, W.S. L.E. Mitotic control by internal secretion: the role of the chalone-adrenalin complex. Exp. Cell Res. 33, 176–194 (1964).

    Article  CAS  Google Scholar 

  39. Lee, S.-J. & McPherron, A.C. Myostatin and the control of skeletal muscle mass. Curr. Opin. Genet. Dev. Commentary 9, 604–607 (1999).

    Article  CAS  Google Scholar 

  40. Lander, A.D.G.K., Wan, F.Y., Nie, Q. & Calof, A.L. Cell lineages and the logic of proliferative control. PLoS Biol. 7, e15 (2009).

    Article  Google Scholar 

  41. Zhao, S. et al. Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development 128, 5051–5060 (2001).

    CAS  PubMed  Google Scholar 

  42. Cinaroglu, A.O.Y., Ozdemir, A., Ozcan, F., Ergorul, C., Cayirlioglu, P., Hicks, D. & Bugra, K. Expression and possible function of fibroblast growth factor 9 (FGF9) and its cognate receptors FGFR2 and FGFR3 in postnatal and adult retina. J. Neurosci. Res. 79, 329–339 (2005).

    Article  CAS  Google Scholar 

  43. Smith, K.M. et al. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat. Neurosci. 9, 787–797 (2006).

    Article  CAS  Google Scholar 

  44. Barnabé-Heider, F. & Miller, F.D. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160 (2003).

    Article  Google Scholar 

  45. Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R. & Miller, F.D. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134, 4369–4380 (2007).

    Article  CAS  Google Scholar 

  46. Polleux, F. & Ghosh, A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci. STKE 11 June 2002, l9.

  47. Martynoga, B., Morrison, H., Price, D.J. & Mason, J.O. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev. Biol. 283, 113–127 (2005).

    Article  CAS  Google Scholar 

  48. Smyth, G. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Apple. Genet. Mol. Biol. 3, 3 (2004).

    Google Scholar 

  49. Smyth, G.K., Michaud, J. & Scott, H.S. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075 (2005).

    Article  CAS  Google Scholar 

  50. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank the Flanders Institute for Biotechnology Microarray Facility, J. Allemeersch and P. Van Hummelen for their skillful analysis of our samples. We thank R. Hevner, D. Ornitz, L. Lei, J. Alberta and C. Stiles for reagents; P. Vanderhaeghen for advice and G. Fishell for numerous discussions. The D.H. laboratory thanks H. Van den Berghe for continuous support. E.S. was a postdoctoral fellow with the Research Foundation Flanders and the Franqui Foundation. This study was supported by the Research Foundation Flanders (G.0288.07), the inter-universitary attraction pole network (IUAP-PAI 6/20) and the EC-FP6 Project Endotrack (LSHG-CT-2006-19050). The V.T. laboratory was supported by Max-Planck Society, Heisenberg Program and Exc 257 of Deutsche Forschungsgemeinschaft, and Fritz Thyssen Foundation. A.N. was a Marie Curie Host Fellow For Early Stage Researchers Training (NEUREST MEST-CT-2004-504193).

Author information

Authors and Affiliations

Authors

Contributions

E.S., A.N., A.M., D.H. and V.T. designed the experiments, E.S., A.N., A.M., J.D. and A.S. conducted the experiments, and S.G and K.-A.N. provided Nex-cre mice. V.T. wrote the manuscript and E.S., A.N. and D.H. edited the manuscript.

Corresponding authors

Correspondence to Danny Huylebroeck or Victor Tarabykin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seuntjens, E., Nityanandam, A., Miquelajauregui, A. et al. Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 12, 1373–1380 (2009). https://doi.org/10.1038/nn.2409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2409

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing