Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Olfactory behavior and physiology are disrupted in prion protein knockout mice

Abstract

The prion protein PrPC is infamous for its role in disease, but its normal physiological function remains unknown. Here we found a previously unknown behavioral phenotype of Prnp−/− mice in an odor-guided task. This phenotype was manifest in three Prnp knockout lines on different genetic backgrounds, which provides strong evidence that the phenotype is caused by a lack of PrPC rather than by other genetic factors. Prnp−/− mice also showed altered behavior in a second olfactory task, suggesting that the phenotype is olfactory specific. Furthermore, PrPC deficiency affected oscillatory activity in the deep layers of the main olfactory bulb, as well as dendrodendritic synaptic transmission between olfactory bulb granule and mitral cells. Notably, both the behavioral and electrophysiological alterations found in Prnp−/− mice were rescued by transgenic neuronal-specific expression of PrPC. These data suggest that PrPC is important in the normal processing of sensory information by the olfactory system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired behavior of Zürich I Prnp−/− mice in the cookie-finding test.
Figure 2: Zürich I Prnp−/− mouse behavior resembles that of a known anosmic mouse (Adcy3−/−).
Figure 3: The cookie-finding phenotype is manifest in Prnp knockouts on other genetic backgrounds.
Figure 4: Neuronal PrP expression rescues the cookie-finding phenotype.
Figure 5: Lck-PrP transgenic mice express some neuronal PrPC.
Figure 6: Power of LFPs and duration of the odor response in Prnp−/− mice.
Figure 7: High-frequency oscillations in PrP knockouts are dampened in the course of a single breath.
Figure 8: Paired-pulse synaptic plasticity of field potentials in the GCL after LOT stimulation.

Similar content being viewed by others

References

  1. Bueler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  CAS  Google Scholar 

  2. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993).

    Article  CAS  Google Scholar 

  3. Steele, A.D., Lindquist, S. & Aguzzi, A. The prion protein knockout mouse, a phenotype under challenge. Prion 1, 83–93 (2007).

    Article  Google Scholar 

  4. Tobler, I. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380, 639–642 (1996).

    Article  CAS  Google Scholar 

  5. Tobler, I., Deboer, T. & Fischer, M. Sleep and sleep regulation in normal and prion protein–deficient mice. J. Neurosci. 17, 1869–1879 (1997).

    Article  CAS  Google Scholar 

  6. Criado, J.R. et al. Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol. Dis. 19, 255–265 (2005).

    Article  CAS  Google Scholar 

  7. Rangel, A. et al. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis and death: role of AMPA/kainate receptors. J. Neurosci. Res. 85, 2741–2755 (2007).

    Article  CAS  Google Scholar 

  8. Walz, R. et al. Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40, 1679–1682 (1999).

    Article  CAS  Google Scholar 

  9. Ford, M.J. et al. A marked disparity between the expression of prion protein and its message by neurones of the CNS. Neuroscience 111, 533–551 (2002).

    Article  CAS  Google Scholar 

  10. Le Pichon, C.E. & Firestein, S. Expression and localization of the prion protein PrPC in the olfactory system of the mouse. J. Comp. Neurol. 508, 487–499 (2008).

    Article  CAS  Google Scholar 

  11. Kay, L.M. & Stopfer, M. Information processing in the olfactory systems of insects and vertebrates. Semin. Cell Dev. Biol. 17, 433–442 (2006).

    Article  Google Scholar 

  12. Schoppa, N.E. & Urban, N.N. Dendritic processing within olfactory bulb circuits. Trends Neurosci. 26, 501–506 (2003).

    Article  CAS  Google Scholar 

  13. Walz, A., Mombaerts, P., Greer, C.A. & Treloar, H.B. Disrupted compartmental organization of axons and dendrites within olfactory glomeruli of mice deficient in the olfactory cell adhesion molecule, OCAM. Mol. Cell. Neurosci. 32, 1–14 (2006).

    Article  CAS  Google Scholar 

  14. Wong, S.T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

    Article  CAS  Google Scholar 

  15. Trinh, K. & Storm, D.R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6, 519–525 (2003).

    Article  CAS  Google Scholar 

  16. Moore, R.C. et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J. Mol. Biol. 292, 797–817 (1999).

    Article  CAS  Google Scholar 

  17. Omri, B. et al. The Lck tyrosine kinase is expressed in brain neurons. J. Neurochem. 67, 1360–1364 (1996).

    Article  CAS  Google Scholar 

  18. Schellinck, H.M., Price, S.R. & Wong, M.J. Using ethologically relevant tasks to study olfactory discrimination in rodents. in Chemical Signals in Vertebrates II (eds. Hurst, J.L., Beynon, R.J., Roberts, S.C. & Wyatt, T.D.) (Springer, New York, 2008).

    Google Scholar 

  19. Lagier, S. et al. GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc. Natl. Acad. Sci. USA 104, 7259–7264 (2007).

    Article  CAS  Google Scholar 

  20. Schoppa, N.E. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron 49, 271–283 (2006).

    Article  CAS  Google Scholar 

  21. Mori, K. & Takagi, S.F. An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. J. Physiol. (Lond.) 279, 569–588 (1978).

    Article  CAS  Google Scholar 

  22. Nicoll, R.A. Inhibitory mechanisms in the rabbit olfactory bulb: dendrodendritic mechanisms. Brain Res. 14, 157–172 (1969).

    Article  CAS  Google Scholar 

  23. Lledo, P.M. & Lagier, S. Adjusting neurophysiological computations in the adult olfactory bulb. Semin. Cell Dev. Biol. 17, 443–453 (2006).

    Article  Google Scholar 

  24. Stopfer, M. Olfactory processing: massive convergence onto sparse codes. Curr. Biol. 17, R363–R364 (2007).

    Article  CAS  Google Scholar 

  25. Kashiwadani, H., Sasaki, Y.F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999).

    Article  CAS  Google Scholar 

  26. Beshel, J., Kopell, N. & Kay, L.M. Olfactory bulb gamma oscillations are enhanced with task demands. J. Neurosci. 27, 8358–8365 (2007).

    Article  CAS  Google Scholar 

  27. Brown, S.L., Joseph, J. & Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005).

    Article  CAS  Google Scholar 

  28. Nusser, Z., Kay, L.M., Laurent, G., Homanics, G.E. & Mody, I. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J. Neurophysiol. 86, 2823–2833 (2001).

    Article  CAS  Google Scholar 

  29. Urban, N.N. Lateral inhibition in the olfactory bulb and in olfaction. Physiol. Behav. 77, 607–612 (2002).

    Article  CAS  Google Scholar 

  30. Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92, 3371–3375 (1995).

    Article  CAS  Google Scholar 

  31. Shepherd, G.M. The Synpatic Organization of the Brain (Oxford University Press, New York, 2003).

    Google Scholar 

  32. Collinge, J. et al. Prion protein is necessary for normal synaptic function. Nature 370, 295–297 (1994).

    Article  CAS  Google Scholar 

  33. Lledo, P.M., Tremblay, P., DeArmond, S.J., Prusiner, S.B. & Nicoll, R.A. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 2403–2407 (1996).

    Article  CAS  Google Scholar 

  34. Curtis, J., Errington, M., Bliss, T., Voss, K. & MacLeod, N. Age-dependent loss of PTP and LTP in the hippocampus of PrP-null mice. Neurobiol. Dis. 13, 55–62 (2003).

    Article  Google Scholar 

  35. Fournier, J.G., Escaig-Haye, F. & Grigoriev, V. Ultrastructural localization of prion proteins: physiological and pathological implications. Microsc. Res. Tech. 50, 76–88 (2000).

    Article  CAS  Google Scholar 

  36. Spielhaupter, C. & Schatzl, H.M. PrPC directly interacts with proteins involved in signaling pathways. J. Biol. Chem. 276, 44604–44612 (2001).

    Article  CAS  Google Scholar 

  37. Aguzzi, A. & Polymenidou, M. Mammalian prion biology: one century of evolving concepts. Cell 116, 313–327 (2004).

    Article  CAS  Google Scholar 

  38. Manson, J.C. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol. 8, 121–127 (1994).

    Article  CAS  Google Scholar 

  39. Lorig, T.S., Elmes, D.G., Zald, D.H. & Pardo, J.V. A computer-controlled olfactometer for fMRI and electrophysiological studies of olfaction. Behav. Res. Methods Instrum. Comput. 31, 370–375 (1999).

    Article  CAS  Google Scholar 

  40. Hubel, D.H. Tungsten microelectrode for recording from single units. Science 125, 549–550 (1957).

    Article  CAS  Google Scholar 

  41. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  Google Scholar 

  42. Sakaguchi, S. et al. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380, 528–531 (1996).

    Article  CAS  Google Scholar 

  43. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  Google Scholar 

  44. Radovanovic, I. et al. Truncated prion protein and Doppel are myelinotoxic in the absence of oligodendrocytic PrPC. J. Neurosci. 25, 4879–4888 (2005).

    Article  CAS  Google Scholar 

  45. Prinz, M. et al. Intrinsic resistance of oligodendrocytes to prion infection. J. Neurosci. 24, 5974–5981 (2004).

    Article  CAS  Google Scholar 

  46. Montrasio, F. et al. B lymphocyte–restricted expression of prion protein does not enable prion replication in prion protein knockout mice. Proc. Natl. Acad. Sci. USA 98, 4034–4037 (2001).

    Article  CAS  Google Scholar 

  47. Raeber, A.J. et al. Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc. Natl. Acad. Sci. USA 96, 3987–3992 (1999).

    Article  CAS  Google Scholar 

  48. Genoud, N. et al. Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proc. Natl. Acad. Sci. USA 101, 4198–4203 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Aguzzi laboratory for their assistance, especially G. Miele and P. Schwartz. We also thank J. Manson for the use of the Edinburgh Prnp−/− line, D.-J. Zou and D. Kelley for helpful comments on the behavioral experiments, and J. Gordon for valuable discussions on the electrophysiology data. This work was supported by grants from the National Institute on Deafness and Other Communication Disorders (S.F., C.E.L.P., M.T.V., B.T.S. and A.T.C.). C.E.L.P. also received a Short-Term Fellowship from the European Molecular Biology Organization. A.A. and M.P. were supported by grants from the European Community and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.E.L.P., A.T.C., M.P., A.A. and S.F. designed the behavior experiments. M.T.V., B.T.S. and S.F. conceived the electrophysiology experiments. C.E.L.P., A.T.C. and M.P. carried out the cookie-finding behavior experiments and C.E.L.P. and M.T.V. performed the habituation-dishabituation test. C.E.L.P. analyzed all of the behavior experiments and carried out the behavior control experiments. B.T.S. designed the electrophysiology setup. M.T.V. performed the electrophysiology experiments and their analysis. C.E.L.P., M.T.V. and S.F. wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stuart Firestein.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 4142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Pichon, C., Valley, M., Polymenidou, M. et al. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci 12, 60–69 (2009). https://doi.org/10.1038/nn.2238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing