Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assaying chromosomal inversions by single-molecule haplotyping

Abstract

Inversions are an important form of structural variation, but they are difficult to characterize, as their breakpoints often fall within inverted repeats. We have developed a method called 'haplotype fusion' in which an inversion breakpoint is genotyped by performing fusion PCR on single molecules of human genomic DNA. Fusing single-copy sequences bracketing an inversion breakpoint generates orientation-specific PCR products, exemplified by a genotyping assay for the int22 hemophilia A inversion on Xq28. Furthermore, we demonstrated that inversion events with breakpoints embedded within long (>100 kb) inverted repeats can be genotyped by haplotype-fusion PCR followed by bead-based single-molecule haplotyping on repeat-specific markers bracketing the inversion breakpoint. We illustrate this method by genotyping a Yp paracentric inversion sponsored by >300-kb-long inverted repeats. The generality of our methods to survey for, and genotype chromosomal inversions should help our understanding of the contribution of inversions to genomic variation, inherited diseases and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for using haplotype-fusion PCR for genotyping inversions.
Figure 2: Genotyping the hemophilia inversion.
Figure 3: Bead haplotyping.
Figure 4: Single-molecule haplotyping on YACs containing single IR3 repeats.
Figure 5: Single-molecule haplotyping on genomic DNA.

Similar content being viewed by others

References

  1. Hogervorst, F.B. et al. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res. 63, 1449–1453 (2003).

    CAS  PubMed  Google Scholar 

  2. Stankiewicz, P. & Lupski, J.R. Genome architecture, rearrangements and genomic disorders. Trends Genet. 18, 74–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Sharp, A.J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armour, J.A., Barton, D.E., Cockburn, D.J. & Taylor, G.R. The detection of large deletions or duplications in genomic DNA. Hum. Mutat. 20, 325–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Bunge, S. et al. Homologous nonallelic recombinations between the iduronate-sulfatase gene and pseudogene cause various intragenic deletions and inversions in patients with mucopolysaccharidosis type II. Eur. J. Hum. Genet. 6, 492–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Rossiter, J.P. et al. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum. Mol. Genet. 3, 1035–1039 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Osborne, L.R. et al. A 1.5 million-base pair inversion polymorphism in families with Williams-Beuren syndrome. Nat. Genet. 29, 321–325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Q., Nozari, G. & Sommer, S.S. Single-tube polymerase chain reaction for rapid diagnosis of the inversion hotspot of mutation in hemophilia A. Blood 92, 1458–1459 (1998).

    CAS  PubMed  Google Scholar 

  13. Small, K., Iber, J. & Warren, S.T. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat. Genet. 16, 96–99 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Antonarakis, S.E. et al. Factor VIII gene inversions in severe hemophilia A: results of an international consortium study. Blood 86, 2206–2212 (1995).

    CAS  PubMed  Google Scholar 

  15. Jobling, M.A. et al. A selective difference between human Y-chromosomal DNA haplotypes. Curr. Biol. 8, 1391–1394 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Wetmur, J.G. et al. Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes. Nucleic Acids Res. 33, 2615–2619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yon, J. & Fried, M. Precise gene fusion by PCR. Nucleic Acids Res. 17, 4895 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dressman, D. et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA 100, 8817–8822 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghadessy, F.J., Ong, J.L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. USA 98, 4552–4557 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bagnall, R.D., Giannelli, F. & Green, P.M. Polymorphism and hemophilia A causing inversions in distal Xq28: a complex picture. J. Thromb. Haemost. 3, 2598–2599 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ross, M.T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogt, P.H. et al. Report of the third international workshop on Y chromosome mapping 1997. Cytogenet. Cell Genet. 79, 2–16 (1997).

    Article  Google Scholar 

  23. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Williams, G. Mapping Studies of the Centromeric Region of the Human Y Chromosome. D. Phil. Thesis. University of Oxford, UK (1998).

    Google Scholar 

  25. Cooper, K.F., Fisher, R.B. & Tyler-Smith, C. Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y-chromosome. J. Mol. Biol. 230, 787–799 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Mitra, R.D. et al. Digital genotyping and haplotyping with polymerase colonies. Proc. Natl. Acad. Sci. USA 100, 5926–5931 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. She, X. et al. Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431, 927–930 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lupski, J.R. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal. Genome Biol. 5, 242 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feuk, L. et al. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genet. 1, e56 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Broman, K.W. et al. Common long human inversion polymorphism on chromosome 8p′. In Science and Statistics: A Festschrift for Terry Speed (ed, Goldstein, D.R.) 237–245 (IMS Lecture Notes - Monograph Series, Beechwood, Ohio, 2003).

    Chapter  Google Scholar 

  32. Shaffer, L.G. & Lupski, J.R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet. 34, 297–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Cohen, D., Chumakov, I. & Weissenbach, J. A first-generation physical map of the human genome. Nature 366, 698–701 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Brownstein, B.H. et al. Isolation of single-copy human genes from a library of yeast artificial chromosome clones. Science 244, 1348–1351 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Monaco, A.P. et al. Isolation of the human sex determining region from a Y-enriched yeast artificial chromosome library. Genomics 11, 1049–1053 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wellcome Trust. We thank M. Jobling for the kind gift of DNA, M. Ross for insights into Xq28, J. McCafferty and W. Howat for help with imaging, J. Collins and A. Coffey for guidance on pulsed-field gel elecrophoresis, and P. Holliger and Z. Oliynyk for advice on preparation of emulsions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E Hurles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Blinded genotyping of ten males of known int22h inversion status. (PDF 158 kb)

Supplementary Fig. 2

Pulsed Field Gel Electrophoresis of genomic DNA before and after emulsion preparation. (PDF 227 kb)

Supplementary Methods (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, D., Shendure, J., Porreca, G. et al. Assaying chromosomal inversions by single-molecule haplotyping. Nat Methods 3, 439–445 (2006). https://doi.org/10.1038/nmeth881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing