Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Analyzing phosphoinositides and their interacting proteins

Abstract

Phosphorylated derivatives of phosphatidylinositol (PtdIns), known as phosphoinositides (PIs), are essential regulators of nuclear functions, cytoskeletal dynamics, cell signaling and membrane trafficking. These lipids are found on the cytosolic face of intracellular membranes but can also be detected in membrane-free regions of the nucleoplasm. Their downstream effectors include several proteins that contain various PI-specific domains. Because impaired PI metabolism is associated with disorders such as cancer, cardiovascular disease and immune dysfunction, there is currently great interest in studying PIs and their metabolic enzymes. Here we describe strategies and techniques for quantitative and qualitative measurement of PIs, for characterization of specific PI-binding proteins and for determination of PI kinase and phosphatase activities in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIs, their metabolic enzymes and binding domains.
Figure 2: Detection of PIs.
Figure 3: Detection of PI-binding proteins.
Figure 4: Measurement of PI kinase activity.

Similar content being viewed by others

References

  1. De Matteis, M.A. & Godi, A. PI-loting membrane traffic. Nat. Cell Biol. 6, 487–492 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Simonsen, A., Wurmser, A.E., Emr, S.D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Prestwich, G.D. Phosphoinositide signaling; from affinity probes to pharmaceutical targets. Chem. Biol. 11, 619–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Pendaries, C., Tronchere, H., Plantavid, M. & Payrastre, B. Phosphoinositide signaling disorders in human diseases. FEBS Lett. 546, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Luo, J., Manning, B.D. & Cantley, L.C. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Balla, T. Phosphoinositide-derived messengers in endocrine signaling. J. Endocrinol. 188, 135–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hammond, G., Thomas, C.L. & Schiavo, G. Nuclear phosphoinositides and their functions. Curr. Top. Microbiol. Immunol. 282, 177–206 (2004).

    CAS  PubMed  Google Scholar 

  9. Lemmon, M.A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Downes, C.P., Gray, A. & Lucocq, J.M. Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol. 15, 259–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Stenmark, H., Aasland, R. & Driscoll, P.C. The phosphatidylinositol 3-phosphate–binding FYVE finger. FEBS Lett. 513, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Balla, T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J. Cell Sci. 118, 2093–2104 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Balla, T., Bondeva, T. & Várnai, P. How accurately can we image inositol lipids in living cells? Trends Pharmocol. Sci. 21, 238–241 (2000).

    Article  CAS  Google Scholar 

  14. Hokin, L.E. & Honkin, M.R. Phosphoinositides and protein secretion in pancreas slices. J. Biol. Chem. 233, 805–810 (1958).

    CAS  PubMed  Google Scholar 

  15. Dove, S.K. et al. Osmotic stress activates phoshatidylinositol-3,5-bisphosphate synthesis. Nature 390, 187–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Shears, S., ed. Signaling by inositides. (Oxford University Press, Oxford, 1997).

    Google Scholar 

  17. Nasuhoglu, C. et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal. Biochem. 301, 243–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Han, X. & Gross, R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44, 1071–1079 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hsu, F.F. & Turk, J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J. Am. Soc. Mass Spectrom. 11, 986–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Wenk, M.R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21, 813–817 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Balla, T. & Varnai, P. Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci. STKE 2002, PL3 (2002).

    PubMed  Google Scholar 

  23. Halet, G. Imaging phosphoinositide dynamics using GFP-tagged protein domains. Biol. Cell. 97, 501–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Gillooly, D.J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Osborne, S.L., Thomas, C.L., Gschmeissner, S. & Schiavo, G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114, 2501–2511 (2001).

    CAS  PubMed  Google Scholar 

  26. Lichtman, J.W. & Conchello, J.A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase–dependent and –independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 6, 393–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9, 95–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793–1796 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Dowler, S., Kular, G. & Alessi, D.R. Protein lipid overlay assay. Sci. STKE 2002, PL6 (2002).

    PubMed  Google Scholar 

  32. Misra, S., Miller, G.J. & Hurley, J.H. Recognizing phosphatidylinositol 3-phosphate. Cell 107, 559–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Schiavo, G., Gu, Q.M., Prestwich, G.D., Söllner, T.H. & Rothman, J.E. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc. Natl. Acad. Sci. USA 93, 13327–13332 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Knodler, A. & Mayinger, P. Analysis of phosphoinositide-binding proteins using liposomes as an affinity matrix. Biotechniques 38, 858, 860, 862 (2005).

    Article  PubMed  Google Scholar 

  35. Ferguson, C.G. et al. Phosphoinositide-containing polymerized liposomes: stable membrane-mimetic vesicles for protein-lipid binding analysis. Bioconjug. Chem. 16, 1475–1483 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. James, S.R. et al. Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation. Biochem. J. 315, 709–713 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sankaran, V.G., Klein, D.E., Sachdeva, M.M. & Lemmon, M.A. High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry 40, 8581–8587 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Nahta, R., Hortobagyi, G.N. & Esteva, F.J. Signal transduction inhibitors in the treatment of breast cancer. Curr. Med. Chem. Anticancer Agents 3, 201–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Schu, P.V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Odorizzi, G., Babst, M. & Emr, S.D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Whitman, M., Downes, C.P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Drees, B.E. et al. Competitive fluorescence polarization assays for the detection of phosphoinositide kinase and phosphatase activity. Comb. Chem. High Throughput Screen. 6, 321–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Gray, A., Olsson, H., Batty, I.H., Priganica, L. & Downes, C.P. Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal. Biochem. 313, 234–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Baykov, A.A., Evtushenko, O.A. & Avaeva, S.M. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Taylor, G.S. & Dixon, J.E. Assaying phosphoinositide phosphatases. Methods Mol. Biol. 284, 217–227 (2004).

    CAS  PubMed  Google Scholar 

  46. Milligan, G. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein–coupled receptors. Eur. J. Pharm. Sci. 21, 397–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Sato, M., Ueda, Y., Takagi, T. & Umezawa, Y. Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat. Cell Biol. 5, 1016–1022 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hurley, J.H. & Misra, S. Signaling and subcellular targeting by membrane-binding domains. Annu. Rev. Biophys. Biomol. Struct. 29, 49–79 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ishikawa, D. & Taki, T. Thin-layer chromatography blotting using polyvinylidene difluoride membrane (far-eastern blotting) and its applications. Methods Enzymol. 312, 145–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Burd, C.G. & Emr, S.D. Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol. Cell 2, 157–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Gaullier, J.M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Patki, V., Lawe, D.C., Corvera, S., Virbasius, J.V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ellson, C.D. et al. Phosphatidylinositol 3-phosphate regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nat. Cell Biol. 3, 679–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of phosphoinositide 3-kinase. Nat. Cell Biol. 3, 675–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Levine, T.P. & Munro, S. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8, 729–739 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19–31 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Thomas, C.C., Dowler, S., Deak, M., Alessi, D.R. & van Aalten, D.M. Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem. J. 358, 287–294 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Downes, C.P., Gray, A., Watt, S.A. & Lucocq, J.M. Advances in procedures for the detection and localization of inositol phospholipid signals in cells, tissues, and enzyme assays. Methods Enzymol. 366, 64–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Kimber, W.A. et al. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem. J. 361, 525–536 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Watt, S.A. et al. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochem. J. 377, 653–663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dove, S.K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23, 1922–1933 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsujita, K. et al. Myotubularin regulates the function of the late endosome through the gram domain-phosphatidylinositol 3,5-bisphosphate interaction. J. Biol. Chem. 279, 13817–13824 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Friant, S. et al. Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev. Cell 5, 499–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Lemmon, M.A., Ferguson, K.M., O'Brien, R., Sigler, P.B. & Schlessinger, J. Specific and high-affinity binding of inositol phophates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92, 10472–10476 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garcia, P. et al. The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34, 16228–16234 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Kavran, J.M. et al. Specificity and promiscuity in phosphoinositide binding by Pleckstrin homology domains. J. Biol. Chem. 273, 30497–30508 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Rameh, L.E. et al. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J. Biol. Chem. 272, 22059–22066 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Klarlund, J.K. et al. Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 1859–1862 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Klarlund, J.K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Venkateswarlu, K., Oatey, P.B., Tavaré, J.M. & Cullen, P.J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol. 8, 463–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Britton, J.S., Lockwood, W.K., Li, L., Cohen, S.M. & Edgar, B.A. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Gillooly, D.J., Raiborg, C. & Stenmark, H. Phosphatidylinositol 3-phosphate is found in microdomains of early endosomes. Histochem. Cell Biol. 120, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Cantley, L.C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Dyson, J.M. et al. The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2. Int. J. Biochem. Cell Biol. 37, 2260–2265 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Kang, S., Bader, A.G., Zhao, L. & Vogt, P.K. Mutated PI 3-kinases: cancer targets on a silver platter. Cell Cycle 4, 578–581 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Laporte, J. et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13, 175–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Bolino, A. et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat. Genet. 25, 17–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, X., Jefferson, A.B., Auethavekiat, V. & Majerus, P.W. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA 92, 4853–4856 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, S. et al. Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54–63 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bader, A.G., Kang, S. & Vogt, P.K. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc. Natl. Acad. Sci. USA 103, 1475–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kang, S., Bader, A.G. & Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. USA 102, 802–807 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.E.R. is a postdoctoral fellow of the Research Council of Norway. We thank the Norwegian Cancer Society and the Novo-Nordisk Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Stenmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusten, T., Stenmark, H. Analyzing phosphoinositides and their interacting proteins. Nat Methods 3, 251–258 (2006). https://doi.org/10.1038/nmeth867

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing