Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching

Abstract

We used single DNA molecule stretching to investigate DNA intercalation by ethidium and three ruthenium complexes. By measuring ligand-induced DNA elongation at different ligand concentrations, we determined the binding constant and site size as a function of force. Both quantities depend strongly on force and, in the limit of zero force, converge to the known bulk solution values, when available. This approach allowed us to distinguish the intercalative mode of ligand binding from other binding modes and allowed characterization of intercalation with binding constants ranging over almost six orders of magnitude, including ligands that do not intercalate under experimentally accessible solution conditions. As ligand concentration increased, the DNA stretching curves saturated at the maximum amount of ligand intercalation. The results showed that the applied force partially relieves normal intercalation constraints. We also characterized the flexibility of intercalator-saturated dsDNA for the first time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA-intercalator phase diagrams.
Figure 2: Dependence of ethidium binding on force.
Figure 3: Force-extension curves in the absence of intercalator, at saturated binding for Ru(phen)2dppz2+, Ru(phen)32+ and ethidium.

Similar content being viewed by others

References

  1. Lerman, L.S. Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3, 18–30 (1961).

    Article  CAS  Google Scholar 

  2. Waring, M.J. DNA Modification and cancer. Annu. Rev. Biochem. 50, 159–192 (1981).

    Article  CAS  Google Scholar 

  3. Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2, 188–200 (2002).

    Article  CAS  Google Scholar 

  4. Mihailovic, A. et al. Exploring the interaction of ruthenium(II) polypyridyl complexes with DNA using single-molecule techniques. Langmuir 22, 4699–4709 (2006).

    Article  CAS  Google Scholar 

  5. Vladescu, I.D., McCauley, M.J., Rouzina, I. & Williams, M.C. Mapping the phase diagram of single DNA molecule force-induced melting in the presence of ethidium. Phys. Rev. Lett. 95, 158102 (2005).

    Article  Google Scholar 

  6. Berman, H.M. & Young, P.R. The interaction of intercalating drugs with nucleic acids. Annu. Rev. Biophys. Bioeng. 10, 87–114 (1981).

    Article  CAS  Google Scholar 

  7. Haq, I. et al. Interaction of delta- and lambda-[Ru(phen)2DPPZ]2+ with DNA: a calorimetric and equilibrium binding study. J. Am. Chem. Soc. 117, 4788–4796 (1995).

    Article  CAS  Google Scholar 

  8. Dupureur, C.M. & Barton, J.K. Structural studies of lambda- and delta-[Ru(phen)2dppz]2+ bound to (GTCGAC)2: characterization of enantioselective intercalation. Inorg. Chem. 36, 33–43 (1997).

    Article  CAS  Google Scholar 

  9. Lincoln, P. & Nordén, B. DNA binding geometries of ruthenium(II) complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands studied with linear dichroism spectroscopy. Borderline cases of intercalation. J. Phys. Chem. B 102, 9583–9594 (1998).

    Article  CAS  Google Scholar 

  10. Satyanarayana, S., Dabrowaik, J.C. & Chaires, J.B. Neither delta- nor lambda-Tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31, 9319–9324 (1992).

    Article  CAS  Google Scholar 

  11. Pyle, A.M. et al. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989).

    Article  CAS  Google Scholar 

  12. Cluzel, P. et al. DNA: an extensible molecule. Science 271, 792–794 (1996).

    Article  CAS  Google Scholar 

  13. McCauley, M.J. & Williams, M.C. Mechanisms of DNA binding determined in optical tweezers experiments. Biopolymers 85, 154–168 (2007).

    Article  CAS  Google Scholar 

  14. McGhee, J.D. & von Hippel, P.H. Theoretical aspects of DNA-protein interactions: cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–489 (1974).

    Article  CAS  Google Scholar 

  15. Mahadevan, S. & Palaniandavar, M. Chiral discrimination in the binding of tris(phenanthroline)ruthenium(II) to calf thymus DNA: an electrochemical study. Bioconjug. Chem. 7, 138–143 (1996).

    Article  CAS  Google Scholar 

  16. Baumann, C.G. et al. Stretching of single collapsed DNA molecules. Biophys. J. 78, 1965–1978 (2000).

    Article  CAS  Google Scholar 

  17. Cruceanu, M. et al. Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins. Nucleic Acids Res. 34, 593–605 (2006).

    Article  CAS  Google Scholar 

  18. Record, M.T., Jr, Lohman, T.M. & de Haseth, P.L. Ion effects on ligand-nucleic acid interactions. J. Mol. Biol. 107, 145–158 (1976).

    Article  CAS  Google Scholar 

  19. Makhatadze, G.I. & Privalov, P.L. Energetics of protein structure. Adv. Prot. Chem. 47, 307–425 (1995).

    CAS  Google Scholar 

  20. Phillips, T., Rajput, C., Twyman, L., Haq, I. & Thomas, J.A. Water-soluble organic dppz analogues–tuning DNA binding affinities, luminescence, and photo-redox properties. Chem. Commun. (Camb.) 4327–4329 (2005).

  21. Smith, S.B., Cui, Y.J. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  22. McCauley, M., Hardwidge, P.R., Maher, L.J., III & Williams, M.C. Dual binding modes for an HMG domain from human HMGB2 on DNA. Biophys. J. 89, 353–364 (2005).

    Article  CAS  Google Scholar 

  23. Phillips, T. et al. DNA binding of an organic dppz-based intercalator. Biochemistry 43, 13657–13665 (2004).

    Article  CAS  Google Scholar 

  24. Chaires, J.B. Drug–DNA interactions. Curr. Opin. Struct. Biol. 8, 314–320 (1998).

    Article  CAS  Google Scholar 

  25. Shokri, L., Marintcheva, B., Richardson, C.C., Rouzina, I. & Williams, M.C. Single-molecule force spectroscopy of salt-dependent bacteriophage T7 gene 2.5 protein binding to single-stranded DNA. J. Biol. Chem. 281, 38689–38696 (2006).

    Article  CAS  Google Scholar 

  26. Westerlund, F., Eng, M.P., Winters, M.U. & Lincoln, P. Binding geometry and photophysical properties of DNA-threading binuclear ruthenium complexes. J. Phys. Chem. B 111, 310–317 (2007).

    Article  CAS  Google Scholar 

  27. Nordmeier, E. Absorption spectroscopy and dynamic and static light-scattering studies of ethidium bromide binding to calf thymus DNA: implications for outside binding and intercalation. J. Phys. Chem. 96, 6045–6055 (1992).

    Article  CAS  Google Scholar 

  28. Jain, S.C. & Sobell, H.M. Visualization of drug-nucleic acid interactions at atomic resolution. VII. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium: uridylyl(3′-5′) adenosine. J. Biomol. Struct. Dyn. 1, 1161–1177 (1984).

    Article  CAS  Google Scholar 

  29. Vardevanyan, P.O., Antonyan, A.P., Parsadanyan, M.A., Davtyan, H.G. & Karapetyan, A.T. The binding of ethidium bromide with DNA: interaction with single- and double-stranded structures. Exp. Mol. Med. 35, 527–533 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the US National Science Foundation (MCB0238190), US National Institutes of Health (GM072462) and American Chemical Society Petroleum Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

I.D.V. performed most experiments. M.J.M. maintained the instrument, labeled DNA and performed some experiments. M.E.N. provided ruthenium compounds. I.D.V., I.R., M.E.N. and M.C.W. designed the research. I.R. developed the theory. I.D.V., M.E.N., I.R. and M.C.W. wrote the paper.

Corresponding authors

Correspondence to Ioulia Rouzina or Mark C Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Drug effect on hysteresis behavior. (PDF 92 kb)

Supplementary Fig. 2

Dependence of Ru(phen)2dppz2+ binding on force. (PDF 81 kb)

Supplementary Fig. 3

Dependence of Ru(phen)32+ binding on force. (PDF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladescu, I., McCauley, M., Nuñez, M. et al. Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching. Nat Methods 4, 517–522 (2007). https://doi.org/10.1038/nmeth1044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth1044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing