Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1

Abstract

Bones and teeth are biocomposites that require controlled mineral deposition during their self-assembly to form tissues with unique mechanical properties. Acidic extracellular matrix proteins play a pivotal role during biomineral formation. However, the mechanisms of protein-mediated mineral initiation are far from understood. Here we report that dentin matrix protein 1 (DMP1), an acidic protein, can nucleate the formation of hydroxyapatite in vitro in a multistep process that begins by DMP1 binding calcium ions and initiating mineral deposition. The nucleated amorphous calcium phosphate precipitates ripen and nanocrystals form. Subsequently, these expand and coalesce into microscale crystals elongated in the c-axis direction. Characterization of the functional domains in DMP1 demonstrated that intermolecular assembly of acidic clusters into a β-sheet template was essential for the observed mineral nucleation. Protein-mediated initiation of nanocrystals, as discussed here, might provide a new methodology for constructing nanoscale composites by self-assembly of polypeptides with tailor-made peptide sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mineral characterization.
Figure 2: Sequential appearance of deposited particles accompanying the hydroxyapatite nucleation and growth process.
Figure 3: Apatite crystallization process characterized by high-resolution TEM.
Figure 4: Calcium-induced self-assembly of peptides D1A and D1B and their function in mineral nucleation.
Figure 5: Characterization of peptides pA and pB.

Similar content being viewed by others

References

  1. Linde, A. & Lundgren, T. From serum to the mineral phase. The role of the odontoblast in calcium transport and mineral formation. Int. J. Dev. Biol. 39, 213–222 (1995).

    CAS  Google Scholar 

  2. Butler, W.T. & Ritchie, H. The nature and functional significance of dentin extracellular matrix proteins. Int. J. Dev. Biol. 39, 169–179 (1995).

    CAS  Google Scholar 

  3. Weiner, S. et al. Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126, 27–41 (1999).

    Article  CAS  Google Scholar 

  4. Blumenthal, N.C. & Posner, A.S. Hydroxyapatite: mechanism of formation and properties. Calc. Tiss. Res. 13, 235–243 (1973).

    Article  CAS  Google Scholar 

  5. Eanes, E.D., Gillessen, I.H. & Posner, A.S. Intermediate states in the precipitation of hydroxyapatite. Nature 208, 365–367 (1965).

    Article  CAS  Google Scholar 

  6. Hunter, G.K., Hauschka, P.V., Poole, A.R., Rosenberg, L.C. & Goldberg, H.A. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem. J. 317, 59–64 (1996).

    Article  CAS  Google Scholar 

  7. Boskey, A.L. Osteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann. NY Acad. Sci. 760, 249–256 (1995).

    Article  CAS  Google Scholar 

  8. Xiao, S. et al. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nature Genet. 27, 201–204 (2001).

    Article  CAS  Google Scholar 

  9. Kinney, J.H. et al. Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II (DI-II). J. Dent. Res. 80, 1555–1559 (2001).

    Article  CAS  Google Scholar 

  10. George, A., Sabsay, B., Simonian, P.A. & Veis, A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J. Biol. Chem. 268, 12624–12630 (1993).

    CAS  Google Scholar 

  11. Qin, C. et al. Comparative study of sialic acid-rich proteins in rat bone and dentin. Eur. J. Oral. Sci. 109, 133–141 (2001).

    Article  CAS  Google Scholar 

  12. George, A., Silberstein, R. & Veis, A. In situ hybridization shows Dmp1 (AG1) to be a developmentally regulated dentin-specific protein produced by mature odontoblasts. Connect. Tissue Res. 33, 67–72 (1995).

    Article  CAS  Google Scholar 

  13. D'Souza, R.N. et al. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J. Bone Miner. Res. 12, 2040–2049 (1997).

    Article  CAS  Google Scholar 

  14. He, G., Dahl, T., Veis, A & George, A. Dentin matrix protein 1 initiates hydroxyapatite formation in vitro. Connect. Tissue Res. 44 (Suppl. 1), 240–245 (2003).

    Article  CAS  Google Scholar 

  15. Triffitt, J.T. & Owen, M. Preliminary studies on the binding of plasma albumin to bone tissue. Calc. Tissue Res. 23, 303–305 (1977).

    Article  CAS  Google Scholar 

  16. Su, X., Sun, K., Cui, F.Z. & Landis, W.J. Organization of apatite crystals in human woven bone. Bone 32, 150–162 (2003).

    Article  CAS  Google Scholar 

  17. Cuisinier, F.J.G., Steuer, P., Brisson, A. & Voegel, J.C. High resolution electron microscopy study of crystal growth mechanisms in chicken bone composites. J. Cryst. Growth 156, 443–453 (1995).

    Article  CAS  Google Scholar 

  18. Houlle, P., Voegel, J.C., Schultz, P., Steuer, P. & Cuisinier, F.J.G. High resolution electron microscopy: structure and growth mechanisms of human dentin crystals. J. Dent. Res. 76, 895–904 (1997).

    Article  CAS  Google Scholar 

  19. Boskey, A.L. The role of extracellular matrix components in dentin mineralization. Crit. Rev. Oral Biol. Med. 2, 369–387 (1991).

    Article  CAS  Google Scholar 

  20. Weiss, I.M., Tuross, N., Addadi, L. & Weiner, S. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 293, 478–491 (2002).

    Article  CAS  Google Scholar 

  21. Stetler-Stevenson, W.G. & Veis, A. Bovine dentin phosphophoryn: calcium ion binding properties of a high molecular weight preparation. Calc. Tissue Int. 40, 97–102 (1987).

    Article  CAS  Google Scholar 

  22. Moradian-Oldak, J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol. 20, 293–305 (2001).

    Article  CAS  Google Scholar 

  23. Kroger, N., Lorenz, S., Brunner, E. & Sumper, M. Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298, 584–586 (2002).

    Article  Google Scholar 

  24. Lakshminarayanan, R., Kini, R.M. & Valiyaveettil, S. Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proc. Natl. Acad. Sci. USA 99, 5155–5159 (2002).

    Article  CAS  Google Scholar 

  25. Shenton, W., Pum, D., Sleytr, U.B. & Mann, S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997).

    Article  CAS  Google Scholar 

  26. Lee, S.W., Mao, C., Flynn, C.E. & Belcher, A.M. Ordering of quantum dots using genetically engineered viruses. Science 296, 892–895 (2002).

    Article  CAS  Google Scholar 

  27. Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K. & Ito, A. Symmetry of Posner's cluster. J. Am. Chem. Soc. 122, 8323–8324 (2000).

    Article  CAS  Google Scholar 

  28. Srinivasan, R., Chen, B., Gorski, J.P. & George, A. Recombinant expression and characterization of dentin matrix protein 1. Connect. Tissue Res. 40, 251–258 (1999).

    Article  CAS  Google Scholar 

  29. Karrasch, S., Dolder, M., Schabert, F., Ramsden, J. & Engel, A. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446 (1993).

    Article  CAS  Google Scholar 

  30. Maruyama, K., Mikawa, T. & Ebashi, S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J. Biochem. 95, 511–519 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues Naomi Eidelmann for providing the standard hydroxyapatite, Nigel Browning and Steve Weiner for their valuable comments and insights. This research was supported by National Institutes of Health grants DE 11657 & DE 13836.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne George.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41563_2003_BFnmat945_MOESM1_ESM.pdf

Supplementary Information: Hypothetical model: A periodic surface with high calcium-binding capacity facilitate the assembly of Posner's cluster and hydroxyapatite nucleation. (PDF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, G., Dahl, T., Veis, A. et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Mater 2, 552–558 (2003). https://doi.org/10.1038/nmat945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing