Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates

Abstract

The crystallographic texture of thin-film coatings plays an essential role in determining such diverse materials properties as wear resistance, recording density in magnetic media and electrical transport in superconductors. Typically, X-ray pole figures provide a macroscopically averaged description of texture, and electron backscattering provides spatially resolved surface measurements. In this study, we have used focused, polychromatic synchrotron X-ray microbeams to penetrate multilayer materials and simultaneously characterize the local structure, orientation and strain tensor of different heteroepitaxial layers with submicrometre resolution. Grain-by-grain microstructural studies of cerium oxide films grown on textured nickel foils reveal two distinct kinetic growth regimes on vicinal surfaces: ledge growth at elevated temperatures and island growth at lower temperatures. In addition, a combinatorial approach reveals that crystallographic tilting associated with these complex interfaces is qualitatively described by a simple geometrical model applicable to brittle films on ductile substrates. The sensitivity of conducting percolation paths to tilt-induced texture improvement is demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Grain-by-grain white-beam X-ray microdiffraction from a film deposited on a polycrystalline substrate.
Figure 2: Crystallographic tilt, Δα, of the CeO2(001) planes relative to the substrate Ni(001) planes.
Figure 3: Heteroepitaxial growth modes for CeO2 films on textured Ni substrates.
Figure 4: Orientation maps produced by X-ray microdiffraction.
Figure 5: Local strain components in CeO2 films on textured Ni substrates.

Similar content being viewed by others

References

  1. Dimos, D., Chaudhari, P., Mannhart, J. & LeGoues, F.K. Orientation dependence of grain-boundary critical currents in YBa2Cu3O7-δ bicrystals. Phys. Rev. Lett. 61, 219–222 ( 1988).

    Article  CAS  Google Scholar 

  2. Kocks, U.F., Tomé, C.N. & Wenk, H.-R. Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Materials Properties (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  3. Larbalestier, D., Gurevich, A., Feldmann, D.M. & Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 414, 368–377 ( 2001).

    Article  CAS  Google Scholar 

  4. Norton, D.P. et al. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tapes with high critical current density. Science 274, 755–757 ( 1996).

    Article  CAS  Google Scholar 

  5. Norton, D.P. et al. Epitaxial YBa2Cu3O7 films on rolled-textured metals for high-temperature superconducting applications. Mater. Sci. Eng. B 56, 86–94 ( 1998).

    Article  Google Scholar 

  6. Goyal, A. et al. Recent progress in the fabrication of high-Jc tapes by epitaxial deposition of YBCO on RABiTS. Physica C 357–360, 903–913 ( 2001).

    Article  Google Scholar 

  7. Ice, G.E. & Larson, B.C. 3D x-ray crystal microscope. Adv. Eng. Mater. 2, 643–646 ( 2000).

    Article  CAS  Google Scholar 

  8. Tamura, N. et al. High spatial resolution orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction. App. Phys. Lett. 80, 3724–3726 ( 2002).

    Article  CAS  Google Scholar 

  9. Larson, B.C., Yang, W., Ice, G.E., Budai J.D. & Tischler, J.Z. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 ( 2002).

    Article  CAS  Google Scholar 

  10. Riekel, C. New avenues in x-ray microbeam experiments. Rep. Prog. Phys. 63, 233–262 ( 2000).

    Article  CAS  Google Scholar 

  11. Poulsen, H.F., Andersen, N.H., Andersen L.G. & Lienert, U., Grain dynamics in Bi-2223 tapes measured by the 3DXRD microscope. Physica C 370, 141–145 ( 2002).

    Article  CAS  Google Scholar 

  12. Chung, J.-S. & Ice, G.E. Automated indexing for texture and strain measurement with broad-bandpass x-ray microbeams. J. Appl. Phys. 86, 5249–5255 ( 1999).

    Article  CAS  Google Scholar 

  13. Park, C. et al. Bend strain tolerance of critical currents for YBa2Cu3O7 films deposited on rolled-textured (001)Ni. Appl. Phys. Lett. 73, 1904–1906 ( 1998).

    Article  CAS  Google Scholar 

  14. Nagai, H. Structure of vapor-deposited GaxIn1-xAs crystals. J. App. Phys. 45, 3789–3794 ( 1974).

    Article  CAS  Google Scholar 

  15. Dodson, B. et al. Asymmetric tilt boundaries and generalized heteroepitaxy. Phys. Rev. Lett. 61, 2681–2684 ( 1988).

    Article  CAS  Google Scholar 

  16. Neumann, D.A., Zabel, H. & Morkoç, H. Terracing in strained-layer superlattices. J. Appl. Phys. 64, 3024–3030 ( 1988).

    Article  CAS  Google Scholar 

  17. Ayers, J.E., Ghandhi, S.K. & Schowalter, L.J. Crystallographic tilting of heteroepitaxial layers. J. Cryst. Growth 113, 430–440 ( 1991).

    Article  CAS  Google Scholar 

  18. Aindow, M. & Pond, R.C. On epitaxial misorientations. Phil. Mag. A 63, 667–694 ( 1991).

    Article  Google Scholar 

  19. Riesz, F. Crystallographic tilting in lattice-mismatched heteroepitaxy: A Dodson-Tsao relaxation approach. J. Appl. Phys. 79, 4111–4117 ( 1996).

    Article  CAS  Google Scholar 

  20. Theis, C.D. & Schlom D.G. Domain structure of epitaxial PbTiO3 films grown on vicinal SrTiO3 . J. Mater. Res. 12, 1297–1305 ( 1997).

    Article  CAS  Google Scholar 

  21. Jain, S.C., Harker, A.H. & Cowley, R.A. Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other sytems. Phil. Mag. A 75, 1461–1515 ( 1997).

    Article  CAS  Google Scholar 

  22. Pashley, D.W. Epitaxy growth mechanisms. Mater. Sci. Technol. 15, 2–8 ( 1999).

    Article  CAS  Google Scholar 

  23. Pesek, A. Hinger, K., Riesz, F. & Lischka, K. Lattice misfit and relative tilt of lattice planes in semiconductor heterostructures. Semicond. Sci. Technol. 6, 705–708 ( 1991).

    Article  Google Scholar 

  24. Ressler, K.G., Sonnenberg, N. & Cima, M.J. Mechanism of biaxial alignment of oxide thin films during ion-beam assisted deposition. J. Am. Ceram. Soc. 80, 2637–2648 ( 1997).

    Article  CAS  Google Scholar 

  25. Bauer, M., Semerad R. & Kinder, H. YBCO films on metal substrates with biaxially aligned MgO buffer layers. IEEE Trans. Appl. Supercon. 9, 1502–1505 ( 1999).

    Article  Google Scholar 

  26. Ernst, F. Metal-oxide interfaces. Mat. Sci. Eng. R 14, 97–156 ( 1995).

    Article  Google Scholar 

  27. Cantoni, C. et al. Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni(001): The role of surface structure and chemistry. App. Phys. Lett. 79, 3077–3079 ( 2001).

    Article  CAS  Google Scholar 

  28. Sun, E.Y. et al. High-resolution TEM/analytical electron microscopy characterization of epitaxial oxide multilayers fabricated by laser ablation on biaxially textured Ni. Physica C 321, 29–38 ( 1999).

    Article  CAS  Google Scholar 

  29. Park, C. et al. Nucleation of epitaxial yttria-stabilized zirconia on biaxially textured (001) Ni for deposited conductors. App. Phys. Lett. 76, 2427–2429 ( 2000).

    Article  CAS  Google Scholar 

  30. Aytug, T. et al. La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7-δ coated conductors. App. Phys. Lett. 79, 2205–2207 ( 2001).

    Article  CAS  Google Scholar 

  31. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 ( 2002).

    Article  CAS  Google Scholar 

  32. Rhyner, J. & Blatter, G. Limiting-path model of the critical current in a textured YBa2Cu3O7-δ film. Phys. Rev. B 40, 829–832 ( 1989).

    Article  CAS  Google Scholar 

  33. Specht, E.D., Goyal, A. & Kroeger, D.M. Scaling of percolative current flow to long lengths in biaxially textured conductors. Supercond. Sci. Technol. 13, 592–597 ( 2000).

    Article  CAS  Google Scholar 

  34. Rutter, N.A., Glowacki, B.A. & Evetts, J.E. Percolation modelling for highly aligned polycrystalline superconducting tapes. Supercond. Sci. Technol. 13, L25–L30 ( 2000).

    Article  CAS  Google Scholar 

  35. Feldmann, D.M. et al. Influence of nickel substrate grain structure on YBa2Cu3O7-x supercurrent connectivity in deformation-textured coated conductors. Appl. Phys. Lett. 77, 2906–2908 ( 2000).

    Article  CAS  Google Scholar 

  36. Holzapfel, B. et al. Grain boundary networks in Y123 coated conductors: formation, properties and simulation. IEEE Trans. Appl. Supercon. 11, 3872–3875 ( 2001).

    Article  Google Scholar 

  37. Nakamura, Y., Izumi, T. & Shiohara, Y. Percolation analysis of the effect of tape length on the current density of 123 coated conductors. Physica C 371, 275–284 ( 2002).

    Article  CAS  Google Scholar 

  38. Verebelyi, D.T. et al. Low angle grain boundary transport in YBa2Cu3O7-δ coated conductors, Appl. Phys. Lett. 76, 1755–1757 ( 2000).

    Article  CAS  Google Scholar 

  39. Norton, D.P., Park, C., Budai, J.D., Pennycook, S.J. & Prouteau, C. Plume-induced stress in pulsed-laser deposited CeO2 films. App. Phys. Lett. 74, 2134–2136 ( 1999).

    Article  CAS  Google Scholar 

  40. Hornstra, J. & Bartels, W.J. Determination of the lattice constant of epitaxial layers of III-V compounds. J. Cryst. Growth 44, 513–517 ( 1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.-S. Chung, E. Williams, and W. P. Lowe for their contributions during this work, 3M Company for supplying the Ni substrates, and T. Aytug for providing the LMO samples. The measurements were performed on the UNI-CAT and MHATT-CAT beam lines at the Advanced Photon Source (APS) at Argonne National Laboratory, which is supported by the US Department of Energy, Office of Science. This research was sponsored by the US Department of Energy Basic Energy Sciences, Division of Materials Sciences, under contract with Oak Ridge National Laboratory, managed by UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Budai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budai, J., Yang, W., Tamura, N. et al. X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates. Nature Mater 2, 487–492 (2003). https://doi.org/10.1038/nmat916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing