Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Dopant mapping for the nanotechnology age

The push for smaller microelectronics poses many challenges, such as locating dopant atoms in semiconductors with ever-increasing precision. The ideal technique must be able to detect single dopants with atomic resolution, and identify their electronic state. Neither is an easy task.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The unrelenting miniaturization of microelectronics is throwing increasingly difficult challenges into the path of characterization experts.

© 1999 The American Physical Society

Figure 2: Scanning tunnelling microscope (STM) image of a (110) cross section through a silicon-doped GaAs crystal.

© 1996 The American Physical Society

Figure 3: Three-dimensional atom probe (3DAP) reconstruction of 11 boron dopants (large pink dots) in silicon (small yellow dots).

Image courtesy of Alfred Cerezo (University of Oxford) and David Larson (Seagate Technology).

Figure 4: Secondary electron image of a cross-section through an InGaAsP-based laser device taken by a scanning electron microscope (SEM).

© 2000 Oxford University Press.

References

  1. Semiconductor Industry Association; http://www.semichips.org/

  2. Muller, D.A. et al. Nature 399, 758–761 (1999).

    Article  CAS  Google Scholar 

  3. Wallace, R.M. & Wilk, G.D. Mater. Res. Soc. Bull. 27, 186–191 (2002).

    Article  Google Scholar 

  4. Perovic, D.D. et al. Ultramicroscopy 58, 104–113 (1995).

    Article  CAS  Google Scholar 

  5. Castell, M.R., Simpson, T.W., Mitchell, I.V., Perovic, D.D. & Baribeau, J.M. Appl. Phys. Lett. 74, 2304–2306 (1999).

    Article  CAS  Google Scholar 

  6. Sealy, C.P., Castell, M.R. & Wilshaw, P.R. J. Electron. Microsc. 49, 311–321 (2000).

    Article  CAS  Google Scholar 

  7. Gribelyuk, M.A. et al. Phys. Rev. Lett. 89, 025502 (2002).

    Article  CAS  Google Scholar 

  8. Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W. & Ourmazd, A. Phys. Rev. Lett. 82, 2614–2617 (1999).

    Article  CAS  Google Scholar 

  9. Twitchett, A.C., Dunin-Borkowski, R.E. & Midgley, P.A. Phys. Rev. Lett. 88, 238–302 (2002).

    Article  Google Scholar 

  10. Ebert, P. Appl. Phys. A 75, 101–112 (2002).

    Article  CAS  Google Scholar 

  11. Crewe, A.V., Wall, J. & Langmore, J. Science 168, 1338–1340 (1970).

    Article  CAS  Google Scholar 

  12. Voyles, P.M., Muller, D.A., Grazul, J.L., Citrin, P.H. & Gossmann, H.-J.L. Nature 416, 826–829 (2002).

    Article  CAS  Google Scholar 

  13. Hillyard, S.E. & Silcox, J. Ultramicroscopy 58, 6–17 (1995).

    Article  CAS  Google Scholar 

  14. Kaiser, U., Muller, D.A., Grazul, J., Chuvulin, A. & Kawasaki, M. Nature Mater. 1, 102–105 (2002).

    Article  CAS  Google Scholar 

  15. Vanfleet, R.R., Robertson, M., McKay, M. & Silcox, J. in Characterization and Metrology for ULSI Technology: 1998 International Conference (Seiler, D.G. et al. eds) 901–905 (American Institute of Physics, 1998).

    Book  Google Scholar 

  16. Batson, P.E., Delby, N. & Krivanek, O.L. Nature 418, 618–620 (2002).

    Article  Google Scholar 

  17. Cerezo, A., Larson, D.J. & Smith, G.D.W. Mater. Res. Soc. Bull. 26, 102–107 (2001).

    Article  CAS  Google Scholar 

  18. Domke, C., Ebert, P., Heinrich, M. & Urban, K. Phys. Rev. B 54, 10288–10291 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Castell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castell, M., Muller, D. & Voyles, P. Dopant mapping for the nanotechnology age. Nature Mater 2, 129–131 (2003). https://doi.org/10.1038/nmat840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing