Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microassembly of semiconductor three-dimensional photonic crystals

This article has been updated

Abstract

Electronic devices and their highly integrated components formed from semiconductor crystals contain complex three-dimensional (3D) arrangements of elements and wiring. Photonic crystals, being analogous to semiconductor crystals, are expected to require a 3D structure to form successful optoelectronic devices. Here, we report a novel fabrication technology for a semiconductor 3D photonic crystal by uniting integrated circuit processing technology with micromanipulation. Four- to twenty-layered (five periods) crystals, including one with a controlled defect, for infrared wavelengths of 3–4.5 μm, were integrated at predetermined positions on a chip (structural error <50 nm). Numerical calculations revealed that a transmission peak observed at the upper frequency edge of the bandgap originated from the excitation of a resonant guided mode in the defective layers. Despite their importance, detailed discussions on the defective modes of 3D photonic crystals for such short wavelengths have not been reported before. This technology offers great potential for the production of optical wavelength photonic crystal devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of micromanipulation.
Figure 2: SEM images of 3D photonic crystals.
Figure 3: Optical properties of the fabricated 3D photonic crystals.
Figure 4: Transmission spectra of the normal and defective eight-layer photonic crystals.
Figure 5: Electromagnetic fields in the x–z plane of the defected eight-layer photonic crystal at the peak transmission frequency calculated by the finite difference time domain method.

Similar content being viewed by others

Change history

  • 14 January 2003

    Kazuaki Sakoda is only affliated to Nanomaterials Laboratory,National Institute for Materials Science,3-13 Sakura,Ibaraki 304-0003,Japan. Figure 4b should read,'Defected crystal'.

Notes

  1. There were several errors in the AOP version of nmat802 (originally published online 12 January 2003).

    Kazuaki Sakoda is only affliated to Nanomaterials Laboratory, National Institute for Materials Science, 3-13 Sakura, Ibaraki 304-0003, Japan.

    Figure 4b should read, 'Defected crystal'.

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  3. Hirayama, H., Hamano, T., & Aoyagi, Y. Novel surface emitting laser diode using photonic band-gap crystal cavity. Appl. Phys. Lett. 69, 791–793 (1996).

    Article  CAS  Google Scholar 

  4. Joannopoulos, J.D., Villeneuve, P.R. & Fan, S. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).

    Article  CAS  Google Scholar 

  5. Knight, J.C., Birks, T.A., Russell, P.St.J. & Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    Article  CAS  Google Scholar 

  6. Krauss, T.F., De La Rue, R.M. & Brand, S. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996).

    Article  CAS  Google Scholar 

  7. Labilloy, D. et al. Quantitative measurement of transmission, reflection, and diffraction of two-dimensional photonic band gap structures at near-infrared wavelengths. Phys. Rev. Lett. 79, 4147–4150 (1997).

    Article  CAS  Google Scholar 

  8. Lin, S.Y., Chow, E., Hietala, V., Villeneuve, P.R. & Joannopoulos, J.D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 (1998).

    Article  CAS  Google Scholar 

  9. Baba, T., Fukaya, N. & Yonekura, J. Observation of light propagation in photonic crystal optical waveguides with bends. Electron. Lett. 35, 654–655 (1999).

    Article  CAS  Google Scholar 

  10. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

  11. Sugimoto, Y. et al. Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs. J. Appl. Phys. 91, 922–929 (2002).

    Article  CAS  Google Scholar 

  12. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  CAS  Google Scholar 

  13. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  CAS  Google Scholar 

  14. Labilloy, D. et al. Demonstration of cavity mode between two-dimensional photonic-crystal mirrors. Electron. Lett. 33, 1978–1980 (1997).

    Article  Google Scholar 

  15. Noda, S., Chutinan, A. & Imada, M. Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608–610 (2000).

    Article  CAS  Google Scholar 

  16. Yablonovitch, E. et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991).

    Article  CAS  Google Scholar 

  17. Cheng, C.C. & Scherer, A. Fabrication of photonic band-gap crystals. J. Vac. Sci. Technol. B 13, 2696–2700 (1995).

    Article  CAS  Google Scholar 

  18. Chelnokov, A., Wang, K., Rowson, S., Garoche, P. & Lourtioz, J.M. Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macropourous silicon. Appl. Phys. Lett. 77, 2943–2945 (2000).

    Article  CAS  Google Scholar 

  19. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    Article  CAS  Google Scholar 

  20. Vlasov, Y.A., Bo, X.Z., Sturm, J.C. & Norris, D.J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  CAS  Google Scholar 

  21. Sun, H.B., Matsuo, S. & Misawa, H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786–788 (1999).

    Article  CAS  Google Scholar 

  22. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. & Turberfield, A.J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    Article  CAS  Google Scholar 

  23. Shoji, S. & Kawata, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerization resin. Appl. Phys. Lett. 76, 2668–2670 (2000).

    Article  CAS  Google Scholar 

  24. Ho, K.M., Chan, C.T., Soukoulis, C.M., Biswas, R. & Sigalas, M. Photonic band gaps in three dimensions: New layer-by-layer periodic structures. Solid State Commun. 89, 413–416 (1994).

    Article  CAS  Google Scholar 

  25. Özbay, E. et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945–1948 (1994).

    Article  Google Scholar 

  26. Chelnokov, A., Rowson, S., Lourtioz, J.M., Duvillaret, L. & Coutaz, J.L. Terahertz characterisation of mechanically machined 3D photonic crystal. Electron. Lett. 33, 1981–1982 (1997).

    Article  Google Scholar 

  27. Lin, S.Y. et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998).

    Article  CAS  Google Scholar 

  28. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    Article  CAS  Google Scholar 

  29. Feigel, A. et al. Chalcogenide glass-based three-dimensional photonic crystals. Appl. Phys. Lett. 77, 3221–3223 (2000).

    Article  CAS  Google Scholar 

  30. Fleming, J.G., Lin, S.Y., El-Kady, I., Biswas, R. & Ho, K.M. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52–55 (2002).

    Article  CAS  Google Scholar 

  31. Aoki, K. et al. Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation. Appl. Phys. Lett. 81, 3122–3124 (2002).

    Article  CAS  Google Scholar 

  32. Morishita, H. & Hatamura, Y. Development of ultra micro manipulator system under stereo SEM observation. Proc. 1993 IEEE/RSJ Int. Conf. Intelligent Robots and Systems 3, 1717–1721 (1993).

    Google Scholar 

  33. Miyazaki, H.T., Miyazaki, H., Ohtaka, K., & Sato, T. Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope. J. Appl. Phys. 87, 7152–7158 (2000).

    Article  CAS  Google Scholar 

  34. Kasaya, T., Miyazaki, H., Saito, S. & Sato, T. Micro object handling under SEM by vision-based automatic control. Proc. 1999 IEEE Int. Conf. Robotics and Automation 2189–2196 (1999).

    Google Scholar 

  35. Namiki, A., Nakabo, Y., Ishii, I. & Ishikawa, M., 1-ms sensory-motor fusion system. IEEE/ASME Trans. Mechatron. 5, 244–252 (2000).

    Article  Google Scholar 

  36. Miyazaki, H.T., Tomizawa, Y., Saito, S., Sato, T., & Shinya, N. Adhesion of micrometer-sized polymer particles under a scanning electron microscope. J. Appl. Phys. 88, 3330–3340 (2000).

    Article  CAS  Google Scholar 

  37. Saito, S., Miyazaki, H.T., Sato, T. & Takahashi, K. Kinematics of mechanical and adhesional micro-manipulation under a scanning electron microscope. J. Appl. Phys. 92, 5140–5149 (2002).

    Article  CAS  Google Scholar 

  38. Özbay, E., Tuttle, G., Sigalas, M., Soukoulis, C.M. & Ho, K.M. Defect structures in a layer-by-layer photonic band-gap crystal. Phys. Rev. B 51, 13961–13965 (1995).

    Article  Google Scholar 

  39. Wada, M., Doi, Y., Inoue, K., Haus, J.W. & Yuan, Z. A simple-cubic photonic lattice in silicon. Appl. Phys. Lett. 70, 2966–2968 (1997).

    Article  CAS  Google Scholar 

  40. Aoki, T. et al. Terahertz time-domain study of a pseudo-simple-cubic photonic lattice. Phys. Rev. B 64, 45106 (2001).

  41. Sakoda, K. Transmittance and Bragg reflectivity of two-dimensional photonic lattices. Phys. Rev. B 52, 8992–9002 (1995).

    Article  CAS  Google Scholar 

  42. Joannopoulos, J.D., Meade, R.D. & Winn, J.N. Photonic Crystals (Princeton Univ. Press, New Jersey, 1995.)

    Google Scholar 

  43. Bishop, D., Gammel, P. & Giles, C.R. The little machines that are making it big. Phys. Today 54, 38–44 (2001).

    Article  CAS  Google Scholar 

  44. García-Santamaría, F. et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures. Adv. Mater. 14, 1144–1147 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T.Sato, H. Morishita and Y. Hatamura for their support. This work has been supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports. Science, and Technology of Japan. K.A. gratefully acknowledges a fellowship 'President's Special Research Grant' provided by RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanna Aoki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, K., Miyazaki, H., Hirayama, H. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nature Mater 2, 117–121 (2003). https://doi.org/10.1038/nmat802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing