Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension

Abstract

Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton–cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some, but not all, lamin A/C antibody immunostains show a basal-to-apical polarization of the nuclear envelope (NE).
Figure 2: Multimerization-deficient lamin A mutant (ΔN20-terminal deletion) strongly reduces the basal-to-apical polarization of the LA/C-C immuno stain.
Figure 3: Cell spreading coincides with the build-up of the basal-to-apical polarization of the LA/C-C and LA/C-N immunostains.
Figure 4: Polarization of the LA/C-C stain can be altered by tuning engineered two-dimensional cell environments and requires physically intact LINC-complexes.
Figure 5: Differential LA/C-C epitope accessibility is not altered when the cell nucleus is bent over a micropost, but can be re-established by cell compression using a non-adhesive PAA cushion.
Figure 6: Basal-to-apical polarization of the LA/C-C stains is reduced for pre-adipogenic hMSCs.

Similar content being viewed by others

References

  1. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  Google Scholar 

  2. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  CAS  Google Scholar 

  3. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  4. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).

    Article  CAS  Google Scholar 

  5. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nature Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  6. Sosa, B. A., Rothballer, A., Kutay, U. & Schwartz, T. U. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149, 1035–1047 (2012).

    Article  CAS  Google Scholar 

  7. Crisp, M. et al. Coupling of the nucleus and cytoplasm: Role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).

    Article  CAS  Google Scholar 

  8. Isermann, P. & Lammerding, J. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23, R1113–R1121 (2013).

    Article  CAS  Google Scholar 

  9. Aebi, U., Cohn, J., Buhle, L. & Gerace, L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323, 560–564 (1986).

    Article  CAS  Google Scholar 

  10. Gerace, L. & Huber, M. D. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J. Struct. Biol. 177, 24–31 (2012).

    Article  CAS  Google Scholar 

  11. Senda, T., Iizuka-Kogo, A. & Shimomura, A. Visualization of the nuclear lamina in mouse anterior pituitary cells and immunocytochemical detection of lamin A/C by quick-freeze freeze-substitution electron microscopy. J. Histochem. Cytochem. 53, 497–507 (2005).

    Article  CAS  Google Scholar 

  12. Dechat, T., Adam, S. A., Taimen, P., Shimi, T. & Goldman, R. D. Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010).

    Article  CAS  Google Scholar 

  13. Lammerding, J. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006).

    Article  CAS  Google Scholar 

  14. Solovei, I. et al. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598 (2013).

    Article  CAS  Google Scholar 

  15. Guilluy, C. et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nature Cell Biol. 16, 376–381 (2014).

    Article  CAS  Google Scholar 

  16. Stuurman, N., Sasse, B. & Fisher, P. A. Intermediate filament protein polymerization: Molecular analysis of Drosophila nuclear lamin head-to-tail binding. J. Struct. Biol. 117, 1–15 (1996).

    Article  CAS  Google Scholar 

  17. Heitlinger, E. et al. The role of the head and tail domain in lamin structure and assembly: Analysis of bacterially expressed chicken lamin A and truncated B2 lamins. J. Struct. Biol. 108, 74–89 (1992).

    Article  CAS  Google Scholar 

  18. Strelkov, S. V., Schumacher, J., Burkhard, P., Aebi, U. & Herrmann, H. Crystal structure of the human lamin A coil 2B dimer: Implications for the head-to-tail association of nuclear lamins. J. Mol. Biol. 343, 1067–1080 (2004).

    Article  CAS  Google Scholar 

  19. Kapinos, L. E. et al. Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 “half-minilamin” dimers. J. Mol. Biol. 396, 719–731 (2010).

    Article  CAS  Google Scholar 

  20. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    Article  CAS  Google Scholar 

  21. Kim, D. H. & Wirtz, D. Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48, 161–172 (2015).

    Article  CAS  Google Scholar 

  22. Shimi, T. et al. The A- and B-type nuclear lamin networks: Microdomains involved in chromatin organization and transcription. Genes Dev. 22, 3409–3421 (2008).

    Article  CAS  Google Scholar 

  23. Manilal, S., Randles, K. N., Aunac, C., Nguyen, M. & Morris, G. E. A lamin A/C β-strand containing the site of lipodystrophy mutations is a major surface epitope for a new panel of monoclonal antibodies. Biochim. Biophys. Acta 1671, 87–92 (2004).

    Article  CAS  Google Scholar 

  24. Isobe, K., Gohara, R., Ueda, T., Takasaki, Y. & Ando, S. The last twenty residues in the head domain of mouse lamin A contain important structural elements for formation of head-to-tail polymers in vitro. Biosci. Biotechnol. Biochem. 71, 1252–1259 (2007).

    Article  CAS  Google Scholar 

  25. Amendola, M. & van Steensel, B. Mechanisms and dynamics of nuclear lamina-genome interactions. Curr. Opin. Cell Biol. 28, 61–68 (2014).

    Article  CAS  Google Scholar 

  26. Stierle, V. et al. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry 42, 4819–4828 (2003).

    Article  CAS  Google Scholar 

  27. Simon, D. N., Domaradzki, T., Hofmann, W. A. & Wilson, K. L. Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations. Mol. Biol. Cell 24, 342–350 (2013).

    Article  CAS  Google Scholar 

  28. Collard, J. F., Senecal, J. L. & Raymond, Y. Differential accessibility of the tail domain of nuclear lamin A in interphase and mitotic cells. Biochem. Biophys. Res. Commun. 173, 363–369 (1990).

    Article  CAS  Google Scholar 

  29. Pelham, R. J. Jr & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  Google Scholar 

  30. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article  Google Scholar 

  31. Kihara, T., Haghparast, S. M., Shimizu, Y., Yuba, S. & Miyake, J. Physical properties of mesenchymal stem cells are coordinated by the perinuclear actin cap. Biochem. Biophys. Res. Commun. 409, 1–6 (2011).

    Article  CAS  Google Scholar 

  32. Tee, S. Y., Fu, J., Chen, C. S. & Janmey, P. A. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100, L25–L27 (2011).

    Article  CAS  Google Scholar 

  33. Jain, N., Iyer, K. V., Kumar, A. & Shivashankar, G. V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl Acad. Sci. USA 110, 11349–11354 (2013).

    Article  CAS  Google Scholar 

  34. Thery, M., Pepin, A., Dressaire, E., Chen, Y. & Bornens, M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil. Cytoskeleton 63, 341–355 (2006).

    Article  CAS  Google Scholar 

  35. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  36. Li, Q., Kumar, A., Makhija, E. & Shivashankar, G. V. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35, 961–969 (2014).

    Article  CAS  Google Scholar 

  37. Luxton, G. W., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959 (2010).

    Article  CAS  Google Scholar 

  38. Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314, 1892–1905 (2008).

    Article  CAS  Google Scholar 

  39. Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185 (2006).

    Article  CAS  Google Scholar 

  40. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  41. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  42. Ramdas, N. M. & Shivashankar, G. V. Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015).

    Article  CAS  Google Scholar 

  43. Taniura, H., Glass, C. & Gerace, L. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol. 131, 33–44 (1995).

    Article  CAS  Google Scholar 

  44. Goldberg, M. et al. The tail domain of lamin Dm0 binds histones H2A and H2B. Proc. Natl Acad. Sci. USA 96, 2852–2857 (1999).

    Article  CAS  Google Scholar 

  45. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  Google Scholar 

  46. Towbin, B. D. et al. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150, 934–947 (2012).

    Article  CAS  Google Scholar 

  47. Talwar, S., Jain, N. & Shivashankar, G. V. The regulation of gene expression during onset of differentiation by nuclear mechanical heterogeneity. Biomaterials 35, 2411–2419 (2014).

    Article  CAS  Google Scholar 

  48. Dittmer, T. A. & Misteli, T. The lamin protein family. Genome Biol. 12, 222 (2011).

    Article  CAS  Google Scholar 

  49. Tse, J. R. & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 10, 1–10 (2010).

    Google Scholar 

  50. Möller, J., Emge, P., Avalos Vizcarra, I., Kollmannsberger, P. & Vogel, V. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces. New J. Phys. 15, 125016 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Burkhardt, J. L. B. Khuan (IMRE, Singapore) and S. Früh for their valuable help with micropost and adhesive microisland substrates; M. Vihinen-Ranta and D. Hodzic for EGFP-lamin A and EGFP-KASH2 constructs, respectively; R. Foisner, O. Medalia, J. Lammerding and R. Fässler for LMNA null, VIM null, EMD null and WT MEF cells; U. Kutay for SUN2 antibody; K. Maniura for the usage of the Amaxa Nucleofector II system. This research was supported by Foundations’ Post Doc Pool, Finland (T.O.I.); Academy of Finland, grants 252225 and 267471 (T.O.I.); Portuguese Foundation for Science and Technology, doctoral grant SFRH/BD/42019/2007 (L.A.); SystemsX.ch - ‘PhosphoNetX’, Internal Nr. 2-67124-08 (V.V.); ERC Advanced Grant European Community, GA233157 (V.V.); and SNF Swiss National Science Foundation, Grant 310030B_133122 (V.V.). Computational resources provided by the Swiss National Supercomputing Center (CSCS) and the University of Tampere Imaging Facility are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

T.O.I., L.A. and V.V. designed the experiments. T.O.I. performed the PAA cushion experiments and L.A. carried out the LA/C-C epitope mapping. T.O.I. and L.A. did the remaining experiments with the help of J.M. (μ-island experiments) and R.S. (cell spreading experiments). F.H. was responsible for the structural analysis of lamin A and SMD simulations. All of the authors were involved in the analyses and interpretation of data. T.O.I., L.A. and V.V. wrote the paper, with the help of the co-authors.

Corresponding author

Correspondence to Viola Vogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihalainen, T., Aires, L., Herzog, F. et al. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nature Mater 14, 1252–1261 (2015). https://doi.org/10.1038/nmat4389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing