Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhomogeneous flow and fracture of glassy materials

Abstract

The fracture mechanism of amorphous materials, which are of crucial importance in various fields of engineering, remains a long-standing fundamental problem of science despite intensive efforts over the years. On the basis of a novel rheological model of fracture, we demonstrate that nonlinear behaviour associated with fracture is a consequence of the coupling between density fluctuations and deformation fields: shear-induced enhancement of density fluctuations is self-amplified by the resulting enhancement of dynamic and elastic asymmetry between denser and less-dense regions. This positive feedback may be the origin of fracture. We propose novel criteria for the onset of mechanical instability, extending from ductile to brittle fracture. Their validity is checked by comparing them with numerical solutions of our model and existing experimental results of metallic and polymeric glass formers. The criteria enable us to predict and design fracture behaviour of materials from the pressure dependence of their viscoelastic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intuitive explanation on the mechanism of fracture, or shear-induced instability, of glassy materials.
Figure 2: Dynamic phase diagram for a sheared compressible viscoelastic liquid.
Figure 3: Evolution of density fluctuations under shear deformation estimated for Vitreloy-1.
Figure 4: Ductile fracture process of a material under simple shear deformation.
Figure 5: Brittle fracture process under simple shear deformation.

Similar content being viewed by others

References

  1. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000).

    Article  CAS  Google Scholar 

  2. Nabarro, F. Theory of Crystal Dislocations (Oxford Univ. Press, 1967).

    Google Scholar 

  3. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977).

    Article  CAS  Google Scholar 

  4. Argon, A. S. Plastic-deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).

    Article  CAS  Google Scholar 

  5. Falk, M. L. & Langer, J. S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E. 57, 7192–7205 (1998).

    Article  CAS  Google Scholar 

  6. Cohen, M. & Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959).

    Article  CAS  Google Scholar 

  7. Maeda, K. & Takeuchi, S. Atomistic process of plastic-deformation in a model amorphous metal. Phil. Mag. A. 44, 643–656 (1981).

    Article  CAS  Google Scholar 

  8. Deng, D., Argon, A. S. & Yip, S. Simulation of plastic-deformation in a 2-dimensional atomic glass by molecular-dynamics. 4. Phil. Trans. R. Soc. 329, 613–640 (1989).

    Article  CAS  Google Scholar 

  9. Demkowicz, M. J. & Argon, A. S. High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. Phys. Rev. Lett. 93, 025505 (2004).

    Article  CAS  Google Scholar 

  10. Shi, Y. F. & Falk, M. L. Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502 (2005).

    Article  Google Scholar 

  11. Varnik, F., Bocquet, L. & Barrat, L.-J. A study of the static yield stress in a binary Lennard-Jones glass. J. Chem. Phys. 120, 2788–2801 (2004).

    Article  CAS  Google Scholar 

  12. Onuki, A. Nonlinear strain theory of plastic flow in solids. J. Phys. Condens. Matter 15, S891–S901 (2003).

    Article  CAS  Google Scholar 

  13. Onuki, A. Plastic flow in two-dimensional solids. Phys. Rev. E. 68, 061502 (2003).

    Article  Google Scholar 

  14. Chen, H. S. & Goldstein, M. Anomalous viscoelastic behavior of metallic glasses of Pd–Si based alloys. J. Appl. Phys. 43, 1642–1648 (1972).

    Article  CAS  Google Scholar 

  15. Chen, H. S. Glassy metals. Rep. Prog. Phys. 43, 353–432 (1980).

    Article  Google Scholar 

  16. Wang, W. H., Dong, C. & Shek, C. H. Bulk metallic glasses. Mater. Sci. Eng. R 44, 45–89 (2004).

    Article  Google Scholar 

  17. Kawamura, Y., Shibata, T., Inoue, A. & Masumoto, T. Deformation behavior of Zr65Al10Ni10Cu15 glassy alloy with wide supercooled liquid region. Appl. Phys. Lett. 69, 1208–1210 (1996).

    Article  CAS  Google Scholar 

  18. Kato, H., Kawamura, Y., Inoue, A. & Chen, H. S. Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20 . Appl. Phys. Lett. 73, 3665–3667 (1998).

    Article  CAS  Google Scholar 

  19. Lu, J., Ravichandran, G. & Johnson, W. L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429–3443 (2003).

    Article  CAS  Google Scholar 

  20. Furukawa, A. & Tanaka, H. Violation of the incompressibility of liquid by simple shear flow. Nature 443, 434–438 (2006).

    Article  CAS  Google Scholar 

  21. Bair, S. & Winer, W. O. The high pressure high shear stress rheology of liquid lubricants. J. Tribol. 114, 1–13 (1992).

    Article  CAS  Google Scholar 

  22. Archer, L. A., Ternet, D. & Larson, R. G. ‘Fracture’ phenomena in shearing flow of viscous liquids. Rheol. Acta 36, 579–584 (1997).

    Article  CAS  Google Scholar 

  23. Larson, R. The Structure and Rheology of Complex Fluids (Oxford Univ. Press, 1998).

    Google Scholar 

  24. Demetriou, M. D. & Johnson, W. L. Modeling the transient flow of undercooled glass-forming liquids. J. Appl. Phys. 95, 2857–2865 (2004).

    Article  CAS  Google Scholar 

  25. Weishaupt, K., Krbecek, H., Pietralla, M., Hochheimer, H. D. & Mayr, P. Pressure dependence of the elastic constants of poly(methyl methacrylate). Polymer 36, 3267–3271 (1995).

    Article  CAS  Google Scholar 

  26. Parry, E. & Tabor, D. Pressure dependence of the shear modulus of various polymers. J. Mater. Sci. 9, 289–292 (1974).

    Article  Google Scholar 

  27. Li, J., Spaepen, F. & Hufnagel, T. C. Nanometre-scale defects in shear bands in a metallic glass. Phil. Mag. A 82, 2623–2630 (2002).

    Article  CAS  Google Scholar 

  28. Liu, L. F., Dai, L. H., Bai, Y. L., Wei, B. C. & Eckert, J. Behavior of multiple shear bands in Zr-based bulk metallic glass. Mater. Chem. Phys. 93, 174–177 (2005).

    Article  CAS  Google Scholar 

  29. Lee, J. Y. et al. Deformation and evolution of shear bands under compressive loading in bulk metallic glasses. Acta Mater. 54, 5271–5279 (2006).

    Article  CAS  Google Scholar 

  30. Varnik, F. Structural relaxation and rheological response of a driven amorphous system. J. Chem. Phys. 125, 164514 (2006).

    Article  CAS  Google Scholar 

  31. Varnik, F. & Henrich, O. Yield stress discontinuity in a simple glass. Phys. Rev. B 73, 174209 (2006).

    Article  Google Scholar 

  32. Zausch, J. et al. From equilibrium to steady state: The transient dynamics of colloidal liquids under shear. J. Phys. Condens. Matter 20, 404210 (2008).

    Article  Google Scholar 

  33. Furukawa, A., Kim, K., Saito, S. & Tanaka, H. Anisotropic cooperative structural rearrangements in sheared supercooled liquids. Phys. Rev. Lett. 102, 016001 (2009).

    Article  Google Scholar 

  34. Tanaka, H. Viscoelastic phase separation. J. Phys. Condens. Matter 12, R207–R264 (2000).

    Article  CAS  Google Scholar 

  35. Helfand, E. & Fredrickson, G. H. Large fluctuations in polymer solutions under shear. Phys. Rev. Lett. 62, 2468–2471 (1989).

    Article  CAS  Google Scholar 

  36. Onuki, A. Phase transitions of fluids in shear flow. J. Phys. Condens. Matter 9, 6119–6157 (1997).

    Article  CAS  Google Scholar 

  37. Doi, M. & Onuki, A. Dynamic coupling between stress and composition in polymer solutions and blends. J. Phys. II (Paris) 2, 1631–1656 (1992).

    CAS  Google Scholar 

  38. Onuki, A. Elastic effects in the phase transition of polymer solutions under shear flow. Phys. Rev. Lett. 62, 2472–2475 (1989).

    Article  CAS  Google Scholar 

  39. Helfand, E. & Fredrickson, G. H. Large fluctuations in polymer solutions under shear. Phys. Rev. Lett. 62, 2468–2471 (1989).

    Article  CAS  Google Scholar 

  40. Bruinsma, R. & Rabin, Y. Shear-flow enhancement and suppression of fluctuations in smectic liquid crystals. Phys. Rev. A 45, 994–1008 (1992).

    Article  CAS  Google Scholar 

  41. Milner, S. T. Dynamic theory of concentration fluctuations in polymer solutions under shear. Phys. Rev. E 48, 3674–3691 (1993).

    Article  CAS  Google Scholar 

  42. Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020–2023 (1997).

    Article  CAS  Google Scholar 

  43. Bonn, D., Kellay, H., Prochnow, M., Ben-Djemiaa, K. & Meunier, J. Delayed fracture of an inhomogeneous soft solid. Science 280, 265–267 (1998).

    Article  CAS  Google Scholar 

  44. Schall, P., Weitz, D. A. & Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895–1899 (2007).

    Article  CAS  Google Scholar 

  45. Moller, P. C. F., Rodts, S., Michels, M. A. J. & Bonn, D. Shear banding and yield stress in soft glassy materials. Phys. Rev. E 77, 041507 (2008).

    Article  CAS  Google Scholar 

  46. Lewandowski, J. J. & Greer, A. L. Temperature rise at shear bands in metallic glasses. Nature Mater. 5, 15–18 (2006).

    Article  CAS  Google Scholar 

  47. Hufnagel, T. C., El-Deiry, P. & Vinci, R. P. Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scr. Mater. 43, 1071–1075 (2000).

    Article  CAS  Google Scholar 

  48. Mukai, T., Nieh, T., Kawamura, Y., Inoue, A. & Higashie, K. Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071–1077 (2002).

    Article  CAS  Google Scholar 

  49. Rogallo, R. S. Numerical experiments in homogeneous turbulence, NASA Tech. Report No. NASA-TM-81315 (Ames Research Centre, 1981).

Download references

Acknowledgements

The authors are grateful to D. A. Head for a critical reading of our manuscript. This work was partially supported by a grant-in-aid for JSPS Fellows (A.F.) and a grand-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (H.T.).

Author information

Authors and Affiliations

Authors

Contributions

A.F. and H.T. conceived the mechanism, A.F. carried out simulations and analysis and A.F. and H.T. wrote the manuscript.

Corresponding authors

Correspondence to Akira Furukawa or Hajime Tanaka.

Supplementary information

Supplementary Information

Supplementary Information (PDF 633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, A., Tanaka, H. Inhomogeneous flow and fracture of glassy materials. Nature Mater 8, 601–609 (2009). https://doi.org/10.1038/nmat2468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing