Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films

Abstract

Porous anodic alumina (PAA) films are widely used as templates for functional nanostructures, because of the high regularity and controllability of the pore morphology. However, growth mechanisms have not yet been developed that can explain quantitative relationships between processing conditions and oxide layer geometry. Here, we present a model for steady-state growth of these amorphous films, incorporating the novel feature that metal and oxygen ions are transported by coupled electrical migration and viscous flow. The oxide flow in the model arises near the film–solution interface at the pore bottoms, in response to the constraint of volume conservation. The hypothesis of viscous flow was successfully validated through detailed comparisons to observations of the motion of tungsten tracers in the film. Predictions of localized tensile stress near nanoscale ridges at the metal–film interface were supported by observations of voids at these sites. We suggest that the ordering of PAA may be explained by a mechanism in which metal–film interface motion is regulated by the combination of ionic migration in the oxide and stress-driven interface diffusion of metal atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction and transport process during film growth.
Figure 2: Results of simulation of steady-state film growth.
Figure 3: Comparison of experimental and simulated tracer profiles during growth.
Figure 4: Simulated tensile stress near ridges on the metal–film interface.

Similar content being viewed by others

References

  1. Thompson, G. E. & Wood, G. C. in Anodic Films on Aluminium. Corrosion: Aqueous Processes and Passive Films (ed. Scully, J. C.) 205–329 (Academic, 1983).

    Book  Google Scholar 

  2. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  3. Li, A. P., Müller, F., Birner, A., Nielsch, K. & Gösele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998).

    Article  CAS  Google Scholar 

  4. Ono, S., Saito, M., Ishiguro, M. & Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473–B478 (2004).

    Article  CAS  Google Scholar 

  5. Lee, W., Ji, R., Gösele, U. & Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater. 5, 741–747 (2006).

    Article  CAS  Google Scholar 

  6. Macak, J. M. et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11, 3–18 (2007).

    Article  CAS  Google Scholar 

  7. Parkhutik, V. P. & Shershulsky, V. I. Theoretical modeling of porous oxide growth on aluminum. J. Phys. D. 25, 1258–1263 (1992).

    Article  CAS  Google Scholar 

  8. Thamida, S. K. & Chang, H. C. Nanoscale pore formation dynamics during aluminum anodization. Chaos 12, 240–251 (2002).

    Article  CAS  Google Scholar 

  9. Singh, G. K., Golovin, A. A. & Aranson, I. S. Formation of self-organized nanoscale porous structures in anodic aluminum oxide. Phys. Rev. B 73, 205422 (2006).

    Article  Google Scholar 

  10. O’Sullivan, J. P. & Wood, G. C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. Lond. A. 317, 511–543 (1970).

    Article  Google Scholar 

  11. Cherki, C. & Siejka, J. Study by nuclear microanalysis and O18 tracer techniques of the oxygen transport processes and the growth laws for porous anodic oxide layers on aluminum. J. Electrochem. Soc. 120, 784–791 (1972).

    Article  Google Scholar 

  12. Siejka, J. & Ortega, C. An O18 study of field-assisted pore formation in compact anodic oxide films on aluminum. J. Electrochem. Soc. 124, 883–891 (1977).

    Article  CAS  Google Scholar 

  13. Houser, J. E. & Hebert, K. R. Modeling the potential distribution in porous anodic alumina films during steady-state growth. J. Electrochem. Soc. 153, B566–B573 (2006).

    Article  CAS  Google Scholar 

  14. Skeldon, P., Thompson, G. E., Garcia-Vergera, S. J., Iglesias-Rubianes, L. & Blanco-Pinzon, C. E. A tracer study of porous alumina. Electrochem. Solid-State Lett. 9, B47–B51 (2006).

    Article  CAS  Google Scholar 

  15. Garcia-Vergera, S. J., Skeldon, P., Thompson, G. E. & Habazaki, H. A flow model of porous anodic film growth on aluminium. Electrochim. Acta 52, 681–687 (2006).

    Article  Google Scholar 

  16. Garcia-Vergera, S. J., Skeldon, P., Thompson, G. E. & Habazaki, H. Tracer studies of anodic films formed on aluminum in malonic and oxalic acids. Appl. Surf. Sci. 254, 1534–1542 (2007).

    Article  Google Scholar 

  17. Garcia-Vergera, S. J., Skeldon, P., Thompson, G. E. & Habazaki, H. Self-generated porosity in anodic alumina formed in sulphuric acid electrolyte. Corros. Sci. 49, 3772–3782 (2007).

    Article  Google Scholar 

  18. Bradhurst, D. H. & Leach, J. S. L. Mechanical properties of thin anodic films on aluminum. J. Electrochem. Soc. 113, 1245–1249 (1966).

    Article  CAS  Google Scholar 

  19. Wüthrich, N. Intrinsic stresses in anodic films on aluminium. Electrochim. Acta 26, 1617–1623 (1981).

    Article  Google Scholar 

  20. Volkert, C. A. Stress and plastic flow in silicon during amorphization by ion-bombardment. J. Appl. Phys. 70, 3521–3527 (1991).

    Article  CAS  Google Scholar 

  21. Volkert, C. A. & Pohlman, A. Radiation-enhanced plastic flow of covalent materials during ion irradiation. Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).

    Article  CAS  Google Scholar 

  22. Mayer, T. M., Chason, E. & Howard, A. J. Roughening instability and ion-induced viscous relaxation of SiO2 surfaces. J. Appl. Phys. 76, 1633–1643 (1994).

    Article  CAS  Google Scholar 

  23. Mayr, S. G., Ashkenazy, Y., Albe, K. & Averback, R. S. Mechanisms of radiation-induced viscous flow: Role of point defects. Phys. Rev. Lett. 90, 055505 (2003).

    Article  CAS  Google Scholar 

  24. Eernisse, E. P. Viscous flow of thermal SiO2 . Appl. Phys. Lett. 30, 290–293 (1977).

    Article  CAS  Google Scholar 

  25. De Graeve, I., Terryn, H. & Thompson, G. E. Influence of local heat development on film thickness for anodizing aluminum in sulfuric acid. J. Electrochem. Soc. 150, B158–B165 (2003).

    Article  CAS  Google Scholar 

  26. Moon, S. M. & Pyun, S. I. The mechanism of stress generation during the growth of anodic oxide films on pure aluminum in acidic solutions. Electrochim. Acta 43, 3117–3126 (1998).

    Article  CAS  Google Scholar 

  27. Ebihara, K., Takahashi, H. & Nagayama, M. Structure and density of anodic oxide films formed on aluminum in sulfuric acid solutions. J. Met. Finish. Soc. Jpn. 33, 156–164 (1982).

    CAS  Google Scholar 

  28. Ebihara, K., Takahashi, H. & Nagayama, M. Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions. J. Met. Finish. Soc. Jpn. 34, 548–553 (1983).

    CAS  Google Scholar 

  29. Suo, Z., Kubair, D. V., Evans, A. G., Clarke, D. R. & Tolpygo, V. K. Stresses induced in alloys by selective oxidation. Acta. Mater. 51, 959–974 (2003).

    Article  CAS  Google Scholar 

  30. Suo, Z. A continuum theory that couples stress and self-diffusion. J. Appl. Mech. 71, 646–651 (2004).

    Article  Google Scholar 

  31. Houser, J. E. Modeling the steady-state growth of porous alumina. PhD Dissertation (Iowa State Univ., 2008).

  32. Vrublevsky, I., Parkoun, V., Schreckenbach, J. & Marx, G. Effect of the current density on the volume expansion of the deposited thin films on aluminum during porous oxide formation. Appl. Surf. Sci. 220, 51–59 (2003).

    Article  CAS  Google Scholar 

  33. Valand, T. & Heusler, K. E. Reactions at the oxide-electrolyte interface of anodic oxide films on aluminum. J. Electroanal. Chem. 149, 71–82 (1983).

    Article  Google Scholar 

  34. Habazaki, H., Shimizu, K., Skeldon, P., Thompson, G. E. & Wood, G. C. The composition of the alloy-film interface during anodic oxidation of Al–W alloys. J. Electrochem. Soc. 143, 2465–2470 (1996).

    Article  CAS  Google Scholar 

  35. Kodeba, E. & Irene, E. A. SiO2 film stress distribution during thermal oxidation of Si. J. Vac. Sci. Tech. B 6, 574–578 (1988).

    Google Scholar 

  36. Nelson, J. C. & Oriani, R. A. Stress generation during anodic oxidation of titanium and aluminum. Corros. Sci. 34, 307–326 (1993).

    Article  CAS  Google Scholar 

  37. Vanhumbeeck, J.-F. & Proost, J. On the contribution of electrostriction to charge-induced stresses in anodic oxide films. Electrochim. Acta 53, 6165–6172 (2008).

    Article  CAS  Google Scholar 

  38. Kolics, A., Polkinghorne, J. C. & Wieckowski, A. Adsorption of sulfate and chloride ions on aluminum. Electrochim. Acta 43, 2605–2618 (1998).

    Article  CAS  Google Scholar 

  39. Rajan, S. S. S. Sulfate adsorbed on hydrous alumina, ligands displaced, and changes in surface charge. Soil Sci. Soc. Am. J. 42, 39–44 (1978).

    Article  CAS  Google Scholar 

  40. He, L. M., Zelazny, L. W., Baligar, V. C., Ritchey, K. D. & Martens, D. C. Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: Triple-layer model. Soil Sci. Soc. Am. J. 61, 784–793 (1997).

    Article  CAS  Google Scholar 

  41. Paul, K. W., Kubicki, J. D. & Sparks, D. L. Quantum chemical calculations of sulfate adsorption at the Al- and Fe-(Hydr)oxide-H2O interface—estimation of Gibbs free energies. Environ. Sci. Tech. 40, 7717–7724 (2006).

    Article  CAS  Google Scholar 

  42. Chason, E., Sheldon, B. W., Freund, L. B., Floro, J. A. & Hearne, S. J. Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).

    Article  CAS  Google Scholar 

  43. Ono, S., Ichinose, H. & Masuko, N. Defects in porous anodic films formed on high purity aluminum. J. Electrochem. Soc. 138, 3705–3710 (1991).

    Article  CAS  Google Scholar 

  44. Ono, S., Ichinose, H. & Masuko, N. Lattice images of crystalline anodic alumina formed on a ridged aluminum substrate. J. Electrochem. Soc. 139, L80–L81 (1992).

    Article  CAS  Google Scholar 

  45. Asoh, H., Ono, S., Hirose, T., Takatori, I. & Masuda, H. Detailed observations of cell junction in anodic porous alumina with square cells. Jpn. J. Appl. Phys. 43, 6342–6346 (2004).

    Article  CAS  Google Scholar 

  46. Mei, Y. F., Wu, X. L., Shao, X. F., Huang, G. S. & Siu, G. G. Formation mechanism of alumina nanotube array. Phys. Lett. A 309, 109–113 (2003).

    Article  CAS  Google Scholar 

  47. Lee, W., Schwirn, K., Steinhart, M., Pippel, E., Scholz, R. & Gösele, U. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotech. 3, 234–239 (2008).

    Article  CAS  Google Scholar 

  48. Mackrodt, W. C. & Tasker, P. W. Surfaces and interfaces in oxides. Chem. Br. 21, 366–369 (1985).

    CAS  Google Scholar 

  49. Schwirn, K. et al. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2, 302–310 (2008).

    Article  CAS  Google Scholar 

  50. Garcia-Vergera, S. J. et al. Incorporation of gold into porous anodic alumina formed on an Al–Au alloy. J. Electrochem. Soc. 155, C333–C339 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the National Science Foundation (DMR-0605957) and by St. Jude Medical Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt R. Hebert.

Supplementary information

Supplementary information

Supplementary information (PDF 759 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houser, J., Hebert, K. The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nature Mater 8, 415–420 (2009). https://doi.org/10.1038/nmat2423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2423

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing