Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks

Abstract

Characterizing the nature of medium-range order (MRO) in liquids and disordered solids is important for understanding their structure and transport properties. However, accurately portraying MRO, as manifested by the first sharp diffraction peak (FSDP) in neutron and X-ray scattering measurements, has remained elusive for more than 80 years. Here, using X-ray diffraction of amorphous red phosphorus compressed to 6.30 GPa, supplemented with micro-Raman scattering studies, we build three-dimensional structural models consistent with the diffraction data. We discover that the pressure dependence of the FSDP intensity and line position can be quantitatively accounted for by a characteristic void distribution function, defined in terms of average void size, void spacing and void density. This work provides a template to unambiguously interpret atomic and void-space MRO across a broad range of technologically promising network-forming materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic number densities are computed from total scattering function results and these parameters constrain structurally refined models that compare extremely well to X-ray diffraction results.
Figure 2: Experimentally constrained structural refinement models provide a means to plausibly discern 3D MRO atomic structures.
Figure 3: When pressure is applied, winding phosphorus chains contract up to 3.61 GPa, where connected subunit structures then separate from each other and buckle into surrounding space.
Figure 4: Calculated void-pixel pair distribution functions and a model for g(r)void quantitatively tie FSDP attributes to average void size, void spacing and void density.

Similar content being viewed by others

References

  1. Tawada, Y., Tsuge, K., Kondo, M., Okamoto, H. & Hamakawa, Y. Properties and structure of alpha-SiC–H for high-efficiency alpha-Si solar-cell. J. Appl. Phys. 53, 5273–5281 (1982).

    Article  CAS  Google Scholar 

  2. Kalkhoran, N. M, Namavar, F. & Maruska, H. P. Optoelectric applications of porous polycrystalline silicon. Appl. Phys. Lett. 63, 2661–2663 (1993).

    Article  CAS  Google Scholar 

  3. Kohara, S. et al. Structural basis for the fast change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006).

    Article  Google Scholar 

  4. Wang, Y., Li, J., Hamza, A. V. & Barbee, T. W. Ductile crystalline line-amorphous nanolaminates. Proc. Natl Acad. Sci. 104, 11155–11160 (2007).

    Article  CAS  Google Scholar 

  5. Lucovsky, G. Specification of medium range order in amorphous materials. J. Non-Cryst. Solids 97, 155–158 (1987).

    Article  Google Scholar 

  6. Popescu, M. A. Hole structure of computer models of non-crystalline materials. J. Non-Cryst. Solids 35, 549–554 (1980).

    Article  Google Scholar 

  7. Elliott, S. R. Medium range order in covalent amorphous solids. Nature 354, 445–452 (1991).

    Article  CAS  Google Scholar 

  8. Bhatia, A. B. & Thorton, D. E. Structural aspects of the electrical resistively of binary alloys. Phys. Rev. B 2, 3004–3012 (1970).

    Article  Google Scholar 

  9. Elliott, S. R. Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys. Rev. Lett. 67, 711–714 (1991).

    Article  CAS  Google Scholar 

  10. Lannin, J. S. & Shanabrook, B. V. Intermediate range order in amorphous red phosphorus. J. Non-Cryst. Solids 49, 209–218 (1982).

    Article  CAS  Google Scholar 

  11. Lannin, J. S. & Shanabrook, B. V. Raman scattering and infrared absorption in amorphous red phosphorus. Solid State Commun. 28, 497–500 (1978).

    Article  CAS  Google Scholar 

  12. Shanabrook, B. V., Lannin, J. S. & Taylor, P. C. Far infrared absorption in bulk amorphous red phosphorous. Solid State Commun. 32, 1279–1283 (1979).

    Article  CAS  Google Scholar 

  13. Goodman, N. B., Ley, L. & Bullett, D. W. Valence-band structures of phosphorus allotropes. Phys. Rev. B 27, 7440–7450 (1983).

    Article  CAS  Google Scholar 

  14. Wilson, M. & Madden, P. A. Voids, layers, and the first sharp diffraction peak in ZnCl2 . Phys. Rev. Lett. 80, 532–535 (1998).

    Article  CAS  Google Scholar 

  15. Fowler, T. G. & Elliott, S. R. Continuous random network models for a-As2S3 . J. Non-Cryst. Solids 92, 31–50 (1987).

    Article  CAS  Google Scholar 

  16. Susman, S., Volin, K. J., Montague, D. G. & Price, D. L. Temperature dependence of the first sharp diffraction peak in vitreous silica. Phys. Rev. B 43, 11/076-081 (1991).

    Google Scholar 

  17. Viščor, P. Structure and the existence of the first sharp diffraction peak in amorphous germanium prepared in UHV and measured in-situ. J. Non-Cryst. Solids 97, 179–182 (1987).

    Article  Google Scholar 

  18. Vepřek, S. & Beyeler, H. U. On the interpretation of the first, sharp maximum in the X-ray scattering pattern of non-crystalline solids and liquids. Phil. Mag. B 44, 557–567 (1981).

    Article  Google Scholar 

  19. Wilson, M., Madden, P. A., Medvedev, N. N., Geiger, A. & Appelhagen, A. Voids in network forming liquids and their influences on the structure and dynamics. J. Chem. Soc. Faraday Trans. 94, 1221–1228 (1998).

    Article  CAS  Google Scholar 

  20. Hultgren, R., Gingrich, N. S. & Warren, B. E. The atomic distribution in red and black phosphorus and the crystalline structure of black phosphorus. J. Chem. Phys. 3, 351–355 (1935).

    Article  CAS  Google Scholar 

  21. Krebs, H. & Gruber, H. U. The atomic distribution in glassy red phosphorus. Z. Naturf. 22a, 96–102 (1967).

    Google Scholar 

  22. Tsvigunov, A. N. X-ray study of the allotropic conversions of amorphous red phosphorus at high pressure and temperature. Russ. J. Phys. Chem. 51, 1331–1333 (1979).

    Google Scholar 

  23. Durig, J. R. & Casper, J. M. On the vibrational spectra and structure of red phosphorus. J. Mol. Struct. 5, 351–358 (1970).

    Article  CAS  Google Scholar 

  24. Olego, D. J. et al. The microscopic structure of bulk amorphous red phosphorus: A Raman scattering investigation. Solid State Commun. 52, 311–314 (1984).

    Article  CAS  Google Scholar 

  25. Shanabrook, B. V., Bishop, S. G. & Taylor, P. C. Photo-luminescence and electron-spin-resonance studies of localized states in amorphous phosphorus. J. Physique 42, C4–C865 (1981).

    Google Scholar 

  26. Long, L. J., Guarise, G. B. & Marani, A. Phase transitions of phosphorus at high pressure. Corsi. Semin. Chim. 5, 97–104 (1967).

    Google Scholar 

  27. Extance, P. & Elliott, S. R. Pressure dependence of the electrical conductivity of amorphous red phosphorus. Phil. Mag. B 43, 469–483 (1980).

    Article  Google Scholar 

  28. Sorgoto, I., Guarise, G. B. & Marini, A. Red to black phosphorus transition up to 65 kbar. High Temp.– High Pressures 2, 405–111 (1970).

    Google Scholar 

  29. Phillips, R. T. & Sobiesierski, Z. Recombination in amorphous red phosphorus. J. Phys. C 20, 4259–4269 (1987).

    Article  CAS  Google Scholar 

  30. Depinna, S. & Cavenett, B. C. Radiative recombination in amorphous phosphorus. J. Phys. C 16, 7063–7080 (1983).

    Article  CAS  Google Scholar 

  31. Elliott, S. R., Dore, J. C. & Marseglia, E. The structure of amorphous phosphorus. J. Phys. Colloq. 46, C8–C349 (1985).

    Article  Google Scholar 

  32. Farmen, H., Blakely, D., Dore, J. C., Bellissent-Funel, M.-C. & Elliott, S. R. Neutron diffraction studies of network structures in amorphous phosphorus. Phys. Scr. 49, 634–636 (1994).

    Article  Google Scholar 

  33. Jones, R. O. & Hohl, D. Structure of phosphorus clusters using simulated annealing— P2 to P8 . J. Chem. Phys. 92, 6710–6721 (1990).

    Article  CAS  Google Scholar 

  34. Jóvári, P. & Pusztai, L. On the structure of amorphous red phosphorus. Appl. Phys. A 74, S1092–S1094 (2002).

    Article  Google Scholar 

  35. Jürgensen, A. The P(1s) and P(2p) XAFS spectra of elemental phosphorus, theory and experiment. Phys. Scr. T115, 548–551 (2005).

    Article  Google Scholar 

  36. Ruck, M. et al. Fibrous red phosphorus. Angew. Chem. Int. Ed. 44, 7616–7619 (2005).

    Article  CAS  Google Scholar 

  37. Fasol, G., Cardona, W., Hönle, W. & v Schnering, H. G. Lattice dynamics of Hittorf’s phosphorus and identification of structural defects in amorphous phosphorus. Solid State Commun. 52, 307–310 (1984).

    Article  CAS  Google Scholar 

  38. Jones, R. O. & Hohl, D. Structure of phosphorus clusters using simulated annealing P2 to P8 . J. Chem. Phys. 92, 6710–6721 (1990).

    Article  CAS  Google Scholar 

  39. Hohl, D. & Jones, R. O. Amorphous phosphorus: A cluster-network model. Phys. Rev. B 45, 8995–9005 (1992).

    Article  CAS  Google Scholar 

  40. Böcker, S. & Häser, M. Covalent structures of phosphorus: A comprehensive theoretical study. Z. Anorg. Allg. Chem. 621, 258–286 (1995).

    Article  Google Scholar 

  41. Song, B., Cao, P.-L., Zhao, W. & Li, B.-X. The structure of P8 and P9 clusters. Phys. Status. Solidi. B 226, 305–314 (2001).

    Article  CAS  Google Scholar 

  42. Greaves, G. N., Elliott, S. R. & Davis, E. A. Amorphous arsenic. Adv. Phys. 28, 49–141 (1979).

    Article  CAS  Google Scholar 

  43. Soper, A. K. Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement. Phys. Rev. B 72, 104204 (2005).

    Article  Google Scholar 

  44. Soper, A. K. The excluded volume effect in confined fluids and liquid water. J. Phys. Condens. Matter 9, 2399–2410 (1997).

    Article  CAS  Google Scholar 

  45. Percus, J. K. & Yevick, G. J. Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110, 1–13 (1958).

    Article  CAS  Google Scholar 

  46. v Zernike, F. & Prins, J. A. X-ray diffraction to determine molecular structure in fluids. Z. F. Phys. 41, 184–194 (1927).

    Google Scholar 

  47. Debye, P. X-ray scattering. Ann. Phys. (Leipzig) 46, 809–823 (1915).

    Article  CAS  Google Scholar 

  48. Eggert, J. H., Weck, G., Loubeyre, P. & Mezouar, M. Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by x-ray diffraction: Argon and water. Phys. Rev. B 65, 174105 (2002).

    Article  Google Scholar 

  49. Kunz, M. et al. A beamline for high pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. J. Synchrotron. Radiat. 12, 650–658 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

J.M.Z. thanks J. Molitoris for sparking an interest to study a-rP, M. Bastea for providing a-rP sample material and C. Thompson of www.mathengineering.com for Matlab consulting and code acceleration tips. We thank J. Eggert for his guidance to properly determine density from high-pressure diffraction data. This work was carried out under the auspices of the US Department of Energy jointly by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Contributions

J.M.Z. devised the project and design engineered the ultrawide-aperture DAC. J.M.Z. and S.M.C. conducted X-ray experiments and subsequent data reductions. J.M.Z. conducted micro-Raman scattering experiments and corresponding data analysis. A.K.S. carried out EPSR analysis of diffraction data. J.M.Z. and A.K.S. wrote the manuscript.

Corresponding author

Correspondence to Joseph M. Zaug.

Supplementary information

Supplementary Information

Supplementary Information (PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaug, J., Soper, A. & Clark, S. Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks. Nature Mater 7, 890–899 (2008). https://doi.org/10.1038/nmat2290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing