Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Cellular matrices

Physiology in microfluidics

The in vivo characteristics of the extracellular matrix, such as biochemical, mechanical and flow properties, are a challenge to mimic in vitro. Now, a three-dimensional hydrogel structure with integrated multiple phases shows promise as such a model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Templated growth of collagen fibrils within a microfluidic device.
Figure 2: Biochemical and biophysical influences on a cell (blue).

References

  1. Griffith, L. G. & Swartz, M. A. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  2. Gillette, B. M. et al. Nature Mater. 7, 636–640 (2008).

    Article  CAS  Google Scholar 

  3. Lee, P., Lin, R., Moon, J. & Lee, L. P. Biomed. Microdev. 8, 35–41 (2006).

    Article  CAS  Google Scholar 

  4. Heilshorn, S. C., Liu, J. C. & Tirrell, D. A. Biomacromolecules 6, 318–323 (2005).

    Article  CAS  Google Scholar 

  5. Halstenberg, S., Panitch, A., Rizzi, S., Hall, H. & Hubbell, J. A. Biomacromolecules 3, 710–723 (2002).

    Article  CAS  Google Scholar 

  6. Shen, W., Zhang, K., Kornfield, J. A. & Tirrell, D. A. Nature Mater. 5, 153–158 (2006).

    Article  CAS  Google Scholar 

  7. Zhang, S. Nature Biotechnol. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  8. Ellis-Behnke, R. G. et al. Proc. Natl Acad. Sci. USA 103, 7530–7530 (2006).

    Article  CAS  Google Scholar 

  9. Lutolf, M. P., Raeber, G. P., Zisch, A. H., Tirelli, N. & Hubbell, J. A. Adv. Mater. 15, 888–892 (2003).

    Article  CAS  Google Scholar 

  10. Moon, J. J., Lee, S. & West, J. L. Biomacromolecules 8, 42–49 (2007).

    Article  CAS  Google Scholar 

  11. Ehrbar, M. et al. Circ. Res. 94, 1124–1132 (2004).

    Article  CAS  Google Scholar 

  12. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  13. Paszek, M. J. et al. Cancer Cell 8, 241–254 (2005).

    Article  CAS  Google Scholar 

  14. Nelson, C. M., Van Duijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Science 314, 298–300 (2006).

    Article  CAS  Google Scholar 

  15. Helm, C. L. E., Fleury, M. E., Zisch, A. H., Boschetti, F. & Swartz, M. A. Proc. Natl Acad. Sci. USA 102, 15779–15784 (2005).

    Article  CAS  Google Scholar 

  16. Shields, J. D. et al. Cancer Cell 11, 526–538 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbell, J. Physiology in microfluidics. Nature Mater 7, 609–610 (2008). https://doi.org/10.1038/nmat2238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing