Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of metal nanoparticles and nanonetworks in alloy degradation

Abstract

Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray data from oxides on Alloy 321 after 1,130 h exposure to a metal-dusting environment.
Figure 2: Electron and scanning probe micrographs of Alloy 321 cross-sections after 1,130 h exposure in a metal-dusting environment.
Figure 3: SEM micrographs of alloys after exposure to a carburizing gas at 1 atm and 593 C.
Figure 4: Three-dimensional profile mapping and Raman spectra of Alloys 601 and ANL1 after 12,858 h exposure to the same metal-dusting environment at 593 C and 1 atm.
Figure 5

Similar content being viewed by others

References

  1. Ricker, R. E. Cost of corrosion. Science 252, 1232–1232 (1991).

    Article  Google Scholar 

  2. Brindle, R. & Winkel, D. Energy impacts of corrosion, energy efficiency and renewable energy annual report and presentation (2005), <http://www1.eere.energy.gov/industry/imf/pdfs/7_corrosion.pdf>.

  3. Zeng, Z. & Natesan, K. Relationship between the growth of carbon nanofilaments and metal dusting corrosion. Chem. Mater. 17, 3794–3801 (2005).

    Article  CAS  Google Scholar 

  4. Young, D. J. Metal dusting reaction mechanisms. Mater. Sci. Forum. 522, 15–26 (2006).

    Article  Google Scholar 

  5. Jakobi, D. & Gommans, R. Typical failures in pyrolysis coils for ethylene cracking. Mater. Corros. 54, 881–886 (2003).

    Article  CAS  Google Scholar 

  6. Yamamoto, Y. et al. Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316, 433–436 (2007).

    Article  CAS  Google Scholar 

  7. Thurmer, K., Williams, E. & Reutt-Robey, J. Autocatalytic oxidation of lead crystallite surfaces. Science 297, 2033–2035 (2002).

    Article  Google Scholar 

  8. Stierle, A. et al. X-ray diffraction study of the ultrathin Al2O3 layer on NiAl(110). Science 303, 1652–1656 (2004).

    Article  CAS  Google Scholar 

  9. Wolf, I. & Grabke, H. J. A study on the solubility and distribution of carbon in oxides. Solid State Commun. 54, 5–10 (1985).

    Article  CAS  Google Scholar 

  10. Hochman, R. F. in Proc. Symp. on Properties of High-Temperature Alloys with Emphasis on Environmental Effects (eds Foroulis, Z. A. & Pettit, F. S.) 715–732 (The Electrochemical Society, New Jersey, 1977).

    Google Scholar 

  11. Zeng, Z. & Natesan, K. Initiation of metal-dusting pits and a method to mitigate metal-dusting corrosion. Oxid. Met. 66, 1–20 (2006).

    Article  CAS  Google Scholar 

  12. Baker, B. A., Hartmann, V. W., Shoemaker, L. E., McCoy, S. A. & Rajendran, S. A new nickel-base alloy for metal dusting resistance. Trans. Ind. Inst. Met. 56, 327–333 (2003).

    CAS  Google Scholar 

  13. Ackermann, H. et al. Metal dusting in low-NOx recirculation burners for fuel oil. Corros. Eng. Sci. Technol. 40, 233–238 (2005).

    Article  CAS  Google Scholar 

  14. Korkhaus, J. Failure mechanisms and material degradation processes at high temperatures in ammonia synthesis. Corros. Eng. Sci. Technol. 40, 204–210 (2005).

    Article  CAS  Google Scholar 

  15. Albertsen, J. Z., Grong, O., Mathiesen, R. H. & Schmid, B. Metallurgical investigation of metal dusting corrosion in plant-exposed nickel-based alloy 602CA. Corros. Eng. Sci. Technol. 40, 239–243 (2005).

    Article  CAS  Google Scholar 

  16. Nishiyama, Y., Otsuka, N. & Kudo, T. Metal dusting behaviour of Cr–Ni steels and Ni-base alloys in a simulated syngas mixture. Corros. Sci. 48, 2064–2083 (2006).

    Article  CAS  Google Scholar 

  17. Zhang, J., Cole, D. M. I. & Young, D. J. Alloying with copper to reduce metal dusting of nickel. Mater. Corros. 56, 756–764 (2005).

    Article  CAS  Google Scholar 

  18. Szakalos, P., Pettersson, R. & Hertzman, S. An active corrosion mechanism for metal dusting on 304L stainless steel. Corros. Sci. 44, 2253–2270 (2002).

    Article  CAS  Google Scholar 

  19. Schneider, A., Viefhaus, H., Inden, G., Grabke, H. J. & Mullerlorenz, E. M. Influence of H2S on metal dusting. Mater. Corros. 49, 336–339 (1998).

    Article  CAS  Google Scholar 

  20. Di Gabriele, F., Stott, F. H. & Liu, Z. Effect of experimental conditions on the metal dusting phenomenon in several commercial nickel-base alloys. Mater. Corros. 58, 81–86 (2007).

    Article  CAS  Google Scholar 

  21. Grabke, H. J. Mechanisms and prevention of corrosion in carbonaceous gases. Mater. Sci. Forum 369, 101–108 (2001).

    Article  Google Scholar 

  22. Wagner, C. Theory of the tarnishing process. Z. Phys. Chem. B21, 25–41 (1933).

    CAS  Google Scholar 

  23. Maak, F. & Wagner, C. Mindestgehalte von Legierungsbestandteilen für die Bildung von Oxydschichten hoher Schutzwirkung gegen Oxydation bei höheren Temperaturen. Mater. Corros. 12, 273–277 (1961).

    Article  CAS  Google Scholar 

  24. Bergner, D. Diffusion of C, N and O in metals, diffusion in metals and alloys. Proc. Int. Conf. 671, 223–240 (1983).

    Google Scholar 

  25. Quadakkers, W. J, Piron-Abellan, J., Shemet, V. & Singheiser, L. Metallic interconnectors for solid oxide fuel cells—a review. Mater. High Temp. 20, 115–127 (2003).

    CAS  Google Scholar 

  26. Renner, F. U. et al. Initial corrosion observed on the atomic scale. Nature 439, 707–710 (2006).

    Article  CAS  Google Scholar 

  27. Schmutz, P. & Frankel, G. S. Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy scratching. J. Electrochem. Soc. 145, 2295–2306 (1998).

    Article  CAS  Google Scholar 

  28. Buchanan, K. S., Zhu, X. B., Meldrum, A. & Freeman, M. R. Ultrafast dynamics of a ferromagnetic nanocomposite. Nano Lett. 5, 383–387 (2005).

    Article  CAS  Google Scholar 

  29. Thayer, P. C. The Electrical Properties of Iron–Chromium Spinel, thesis for Degree of Doctor of Philosophy, Colorado State Univ., Fort Collins, Colorado (1972).

  30. Natesan, K. & Zeng, Z. Argonne National Laboratory Report, ANL-07/30, 68–72, October, (2007).

  31. Muller, F. & Kleppa, O. J. Thermodynamics of formation of chromite spinels. J. Inorg. Nucl. Chem. 35, 2673–2678 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. L. Rink for conducting the metal-dusting experiments, S. Cai for data analysis of the nanobeam XRD and J. Froitzheim for SEM analysis. This work is supported by the US Department of Energy, Office of Industrial Technologies. Use of the Advanced Photon Source, the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and K.N. planned the experiments and analysed the data, Z.C. carried out the APS nanobeam experiment and S.B.D. carried out MFM measurements and contributed to data analysis and interpretation.

Corresponding author

Correspondence to Z. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Z., Natesan, K., Cai, Z. et al. The role of metal nanoparticles and nanonetworks in alloy degradation. Nature Mater 7, 641–646 (2008). https://doi.org/10.1038/nmat2227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing