Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Cell and biomolecular mechanics in silico

Abstract

Recent developments in computational cell and biomolecular mechanics have provided valuable insights into the mechanical properties of cells, subcellular components and biomolecules, while simultaneously complementing new experimental techniques used for deciphering the structure–function paradigm in living cells. These computational approaches have direct implications in understanding the state of human health and the progress of disease and can therefore aid immensely in the diagnosis and treatment of diseases. We provide an overview of the computational approaches that are currently used in understanding various aspects of cell and bimolecular mechanics. Our emphasis is on state-of-the-art techniques and the progress made in addressing key challenges in biomechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational approaches in cell and biomolecular mechanics.
Figure 2: Experimental techniques in cell mechanics and the corresponding continuum-based models.
Figure 3: Biomechanics of the human RBC in health and disease.
Figure 4: Bio-chemo-mechanical model for cell contractility.

© 2006 NAS, USA

Figure 5: Biomechanics of collagen.
Figure 6: Role of mutation on protein folding.

Similar content being viewed by others

References

  1. Crick, F. H. S. & Hughes, A. F. W. The physical properties of cytoplasm. Exp. Cell. Res. 1, 37–80 (1950).

    Google Scholar 

  2. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  Google Scholar 

  3. Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78, 763–781 (1998).

    CAS  Google Scholar 

  4. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    CAS  Google Scholar 

  5. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    CAS  Google Scholar 

  6. Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 15, 1397–1408 (2003).

    Google Scholar 

  7. Chen, C. S., Tan, J. & Tien, J. Mechanotransduction at cell–matrix and cell–cell contacts. Annu. Rev. Biomed. Eng. 6, 275–302 (2004).

    CAS  Google Scholar 

  8. Huang, H., Kamm, R. D. & Lee, R. T. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1–C11 (2004).

    CAS  Google Scholar 

  9. Li, S., Guan, J. L. & Chien, S. Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7, 105–150 (2005).

    CAS  Google Scholar 

  10. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    CAS  Google Scholar 

  11. Gardel, M. L. et al. Pre-stressed f-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103, 1762–1767 (2006).

    CAS  Google Scholar 

  12. Rosenblatt, N., Hu, S., Suki, B., Wang, N. & Stamenovic, D. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells. Annu. Rev. Biomed. Eng. 35, 224–234 (2007).

    Google Scholar 

  13. Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    CAS  Google Scholar 

  14. Kim, B. S., Nikolovski, J., Bonadio, J. & Mooney, D. J. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnol. 17, 979–983 (1999).

    CAS  Google Scholar 

  15. Trickey, W. R., Lee, G. M. & Guilak, F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18, 891–898 (2000).

    CAS  Google Scholar 

  16. Smith, D. H., Wolf, J. A. & Meaney, D. F. A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7, 131–139 (2001).

    CAS  Google Scholar 

  17. Lehoux, S. & Tedgui, A. Cellular mechanics and gene expression in blood vessels. J. Biomech. 36, 631–643 (2003).

    Google Scholar 

  18. Ingber, D. E. The mechanochemical basis of cell and tissue regulation. Mech. Chem. Biosys. 1, 53–68 (2004).

    CAS  Google Scholar 

  19. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  Google Scholar 

  20. Kong, H. J. et al. Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nature Mater. 4, 460–464 (2005).

    CAS  Google Scholar 

  21. Bao, G. & Suresh, S. Cell and molecular mechanics of biological materials. Nature Mater. 2, 715–725 (2003).

    CAS  Google Scholar 

  22. Van Vilet, K. J., Bao, G. & Suresh, S. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881–5905 (2003).

    Google Scholar 

  23. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    CAS  Google Scholar 

  24. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    CAS  Google Scholar 

  25. Gracheva, M. E. & Othmer, H. G. A continuum model of motility in ameboid cells. Bull. Math. Biol. 66, 167–193 (2004).

    Google Scholar 

  26. Liu, W. K. et al. Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006).

    Google Scholar 

  27. Haidar, M. A. & Guilak, F. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. J. Biomech. Eng. 124, 586–595 (2002).

    Google Scholar 

  28. Cristini, V. & Kassab, G. S. Computer modeling of red blood cell rheology in the microcirculation: A brief overview. Ann. Biomed. Eng. 33, 1724–1727 (2005).

    Google Scholar 

  29. Caille, N., Thoumine, O., Tardy, Y. & Meister, J. J. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177–187 (2002).

    Google Scholar 

  30. Stamenovic, D. & Ingber, D. E. Models of cytoskeletal mechanics of adherent cells. Biomech. Model. Mechanobiol. 1, 95–108 (2002).

    CAS  Google Scholar 

  31. Lim, C. T., Zhou, E. H. & Quek, S. T. Mechanical models for living cells—a review. J. Biomech. 29, 195–216 (2006).

    Google Scholar 

  32. Fabry, B. et al. Time scale and other invariants of integrative mechanical behavior in living cell. Phys. Rev. E 68, 041914 (2003).

    Google Scholar 

  33. Fabry, B. & Fredberg, J. J. Remodeling of the airway smooth muscle cell: are we built of glass? Respir. Physiol. Neurobiol. 137, 109–124 (2003).

    Google Scholar 

  34. Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. The consensus mechanics of cultured mammalian cells. Proc. Natl Acad. Sci. USA 103, 10259–10264 (2006).

    CAS  Google Scholar 

  35. Deng, L. et al. Fast and slow dynamics of the cytoskeleton. Nature Mater. 5, 636–640 (2006).

    CAS  Google Scholar 

  36. Stamenovic, D. et al. Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress. J. Appl. Physiol. 96, 1600–1605 (2004).

    Google Scholar 

  37. Vaziri, A., Xue, Z., Kamm, R. D. & Kaazempur-Mofrad, M. R. A computational study on cell mechanics based on power-law rheology. Comput. Methods Appl. Mech. Eng. 196, 2965–2971 (2007).

    Google Scholar 

  38. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    CAS  Google Scholar 

  39. Hu, S., Chen, J., Butler, J. P. & Wang, N. Prestress mediates force propagation into the nucleus. Biochem. Biophys. Res. Commun. 329, 423–428 (2005).

    CAS  Google Scholar 

  40. Wang, N. & Suo, Z. Long-distance propagation of forces in a cell. Biochem. Biophys. Res. Commun. 328, 1133–1138 (2005).

    CAS  Google Scholar 

  41. Blumenfeld, R. Isostaticity and controlled force transmission in the cytoskeleton: a model awaiting experimental evidence. Biophys. J. 91, 1970–1983 (2006).

    CAS  Google Scholar 

  42. Vaziri, A., Lee, H. & Kaazempur-Mofrad, M. R. Deformation of the nucleus under indentation: mechanics and mechanisms. J. Mater. Res. 21, 2126–2135 (2006).

    CAS  Google Scholar 

  43. Deguchi, S., Maeda, K., Ohashi, T. & Sato, M. Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J. Biomech. 38, 1751–1759 (2005).

    Google Scholar 

  44. Vaziri, A. & Kaazempur-Mofrad, M. R. Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 40, 2053–2062 (2007).

    Google Scholar 

  45. Wilson, K. Integrity matters: linking nuclear architecture to lifespan. Proc. Natl Acad. Sci. USA 102, 18767–18768 (2005).

    CAS  Google Scholar 

  46. Mattout, A., Dechat, T., Adam, S. A., Goldman, R. D. & Gruenbaum, Y. Nuclear lamins, diseases and aging. Curr. Opin. Cell Biol. 18, 335–341 (2006).

    CAS  Google Scholar 

  47. Dao, M., Li, J. & Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003).

    Google Scholar 

  48. Mills, J. P., Qie, L., Dao, M., Lim, C. T. & Suresh, S. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosys. 1, 169–180 (2004).

    CAS  Google Scholar 

  49. Li, J., Dao, M., Lim, C. T. & Suresh, S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88, 3707–3719 (2005).

    CAS  Google Scholar 

  50. Dao, M., Li, J. & Suresh, S. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26, 1232–1244 (2006).

    CAS  Google Scholar 

  51. Suresh, S. et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005).

    CAS  Google Scholar 

  52. Gov, N. S. & Safran, S. A. Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys. J. 88, 1859–1874 (2005).

    CAS  Google Scholar 

  53. Gov, N. S. Active elastic network: Cytoskeleton of the red blood cells. Phys. Rev. E 75, 011921 (2007).

    Google Scholar 

  54. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. Pathogenic basis of malaria. Nature 415, 673–679 (2002).

    CAS  Google Scholar 

  55. Shelby, J. P., White, J., Ganesan, K., Rathod, P. K. & Chiu, D. T. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. USA 100, 14618–14622 (2003).

    CAS  Google Scholar 

  56. Kol, N. et al. A stiffness switch in HIV. Biophys. J. 92, 1777–1783 (2007).

    CAS  Google Scholar 

  57. Deshpande, V. S., McMeeking, R. M. & Evans, A. G. A bio-chemo-mechanical model for cell contractility. Proc. Natl Acad. Sci. USA 103, 14015–14020 (2006).

    CAS  Google Scholar 

  58. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nature Mater. 4, 557–561 (2005).

    CAS  Google Scholar 

  59. Urbanc, B. et al. Molecular dynamics simulation of amyloid beta dimer formation. Biophys. J. 87, 2310–2321 (2004).

    CAS  Google Scholar 

  60. Bracken, C., Iakoucheva, L. M., Romero, P. R. & Dunker, A. K. Combining prediction, computation and experiment for the characterization of protein disorder. Curr. Opin. Struct. Biol. 14, 570–576 (2004).

    CAS  Google Scholar 

  61. Dokholyan, N. Studies of folding and misfolding using simplified models. Curr. Opin. Struct. Biol. 16, 79–85 (2006).

    CAS  Google Scholar 

  62. Buehler, M. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc. Natl Acad. Sci. USA 103, 12285–12290 (2006).

    CAS  Google Scholar 

  63. Boal, D. H. & Boey, S. K. Barrier-free paths of directed protein motion in the erythrocyte plasma membrane. Biophys. J. 69, 372–379 (1995).

    CAS  Google Scholar 

  64. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS  Google Scholar 

  65. Canadas, P., Laurent, V. M., Oddou, C., Isabey, D. & Wendling, S. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. J. Theor. Biol. 218, 155–173 (2002).

    Google Scholar 

  66. Canadas, P., Wendling-Mansuy, S. & Isabey, D. Frequency response of a viscoelastic tensegrity model: Structural rearrangement contribution to cell dynamics. ASME J. Biomech. Eng. 128, 487–495 (2006).

    Google Scholar 

  67. Satcher, R. L. & Dewey, C. F. Theoretical estimates of mechanical properties of endothelial cell cytoskeleton. Biophys. J. 71, 109–118 (1996).

    Google Scholar 

  68. Satcher, R. L., Dewey, C. F. & Hartwig, J. H. Mechanical remodeling of endothelial surface and actin cytoskeleton induced by fluid flow. Microcirculation 4, 439–453 (1997).

    CAS  Google Scholar 

  69. Coughlin, M. F. & Stamenovic, D. A pre-stressed cable network model of the adherent cell cytoskeleton. Biophys. J. 84, 1328–1336 (2003).

    CAS  Google Scholar 

  70. Boey, S. K., Boal, D. H. & Discher, D. E. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys. J. 75, 1573–1583 (1998).

    CAS  Google Scholar 

  71. Sultan, C., Stamenovic, D. & Ingber, D. E. A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann. Biomed. Eng. 32, 520–530 (2004).

    Google Scholar 

  72. Discher, D. E., Boal, D. H. & Boey, S. K. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J. 75, 1584–1597 (1998).

    CAS  Google Scholar 

  73. Stultz, C. M. & Edelman, E. R. A structural model that explains the effects of hyperglycemia on collagenolysis. Biophys. J. 85, 2198–2204 (2003).

    CAS  Google Scholar 

  74. Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E. & Schulten, K. Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Biol. 15, 423–431 (2005).

    CAS  Google Scholar 

  75. Kuhlman, B. & Baker, D. Exploring folding free energy landscapes using computational protein design. Curr. Opin. Struct. Biol. 14, 89–95 (2004).

    CAS  Google Scholar 

  76. Zacharias, M. Minor groove deformability of DNA: A molecular dynamics free energy simulation study. Biophys. J. 91, 882–891 (2006).

    CAS  Google Scholar 

  77. Stultz, C. M. The folding mechanism of collagen-like model peptides explored through detailed simulations. Protein Sci. 15, 2166–2177 (2006).

    CAS  Google Scholar 

  78. Zaman, M. H. & Kaazempur-Mofrad, M. R. How flexible is α-actinin's rod domain? Mech. Chem. Biosyst. 1, 291–302 (2004).

    Google Scholar 

  79. Ritchie, R. O., Kruzic, J. J., Muhlstein, C. L., Nalla, R. K. & Stach, E. A. Characteristic dimensions and the micro-mechanisms of fracture and fatigue in 'nano' and 'bio' material. Int. J. Fracture 128, 1–15 (2004).

    CAS  Google Scholar 

  80. Buehler, M. J. Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly. J. Mater. Res. 21, 1947–1961 (2006).

    CAS  Google Scholar 

  81. Rauch, F. & Glorieux, F. H. Osteogenesis imperfecta. Lancet 363, 1377–1385 (2004).

    CAS  Google Scholar 

  82. Vendruscolo, M., Paci, E., Karplus, M. & Dobson, C. M. Structures and relative free energies of partially folded states of proteins. Proc. Natl Acad. Sci. USA 100, 14817–14821 (2003).

    CAS  Google Scholar 

  83. Ayton, G., Badenhagen, S. G., McMurtry, P., Sulsky, D. & Voth, G. A. Interfacing continuum and molecular dynamics: an application to lipid bilayers. J. Chem. Phys. 114, 6913–6924 (2001).

    CAS  Google Scholar 

  84. Lague, P., Zuckermann, M. J. & Roux, B. Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys J. 81, 276–284 (2001).

    CAS  Google Scholar 

  85. Miao, L. et al. From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J. 82, 1429–1444 (2002).

    CAS  Google Scholar 

  86. N'Dri, N. A., Shyy, A. & Tay, R. T. S. Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys. J. 85, 2273–2286 (2003).

    CAS  Google Scholar 

  87. Krasik, E. F., Yee, K. L. & Hammer, D. A. Adhesive dynamics simulation of neutrophil arrest with deterministic activation. Biophys. J. 91, 1145–1155 (2006).

    CAS  Google Scholar 

  88. Kafer, J., Hogeweg, P. & Maree, A. F. Moving forward moving backward: directional sorting of chemotactic cells due to size and adhesion differences. PLoS Comput. Biol. 2, e56 (2006).

    Google Scholar 

  89. Rubinstein, B., Jacobson, K. & Mogilner, A. Multiscale two-dimensional modeling of a motile simple-shaped cell. SIAM Multiscale Model. Simul. 3, 413–439 (2005).

    CAS  Google Scholar 

  90. Marée, A. F. M., Jilkine, A., Dawes, A., Grieneisen, V. A. & Edelstein-Keshet, L. Polarization and movement of keratocytes: a multiscale modeling approach. Bull. Math. Biol. 68, 1169–1211 (2006).

    Google Scholar 

  91. Shim, E. B., Leem, C. H., Abe, Y. & Noma, A. A new multi-scale simulation model of the circulation: from cells to systems. Phil. Trans. R. Soc. A 364, 1483–1500 (2006).

    CAS  Google Scholar 

  92. Chaturvedi, R. et al. On multiscale approaches to three dimensional modeling of morphogenesis. J. R. Soc. Interface 2, 237–253 (2005).

    CAS  Google Scholar 

  93. Kruse, K. & Julicher, F. Dynamics and mechanics of motor-filament systems. Eur. Phys. J. E 20, 459–465 (2006).

    CAS  Google Scholar 

  94. Kruse, K., Joanny, J. F., Julicher, F. & Prost, J. Contractility and retrograde flow in lamellipodium motion. Phys. Biol. 3, 130–137 (2006).

    CAS  Google Scholar 

  95. Li, J., Lykotrafitis, G., Dao, M. & Suresh, S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl Acad. Sci. USA 104, 4937–4942 (2007).

    CAS  Google Scholar 

  96. Wei, Z., Deshpande, V. S., McMeeking, R. M. & Evans, A. G. Analysis and interpretation of stress fiber organization in cells subjected to cyclic stretch. J. Biomed. Eng. (in the press).

  97. Herant, M., Marganski, W. A. & Dembo, M. The mechanics of neutrophils: synthetic modeling of three experiments. Biophys. J. 84, 3389–3413 (2003).

    CAS  Google Scholar 

  98. Costa, K. D. & Yin, F. C. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. J. Biomech. 121, 462–471 (1999).

    CAS  Google Scholar 

  99. Ohashi, T., Ishii, Y., Ishikawa, Y., Matsumoto, T. & Sato, M. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Biomed. Mater. Eng. 12, 319–327 (2002).

    CAS  Google Scholar 

  100. Ng, L., Hung, H. H., Sprunt, A., Chubinskaya, S., Ortiz, C. & Grodzinsky, A. Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J. Biomech. 40, 1011–1023 (2007).

    Google Scholar 

  101. Shin, D. & Athanasiou, K. R. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 17, 880–890 (1999).

    CAS  Google Scholar 

  102. Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B. & Fredberg, J. J. A finite element model of cell deformation during magnetic bead twisting. J. App. Physiol. 93, 1429–1436 (2002).

    Google Scholar 

  103. Charras, G. T. & Horton, M. A. Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 83, 858–879 (2002).

    CAS  Google Scholar 

  104. Ohayon, J. et al. Analysis of nonlinear responses of adherent epithelial cells probed by magnetic bead twisting: A finite element model based on homogenization approach. J. Biomech. Eng. 126, 685–698 (2005).

    Google Scholar 

  105. Karcher, H. et al. A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 85, 3336–3349 (2003).

    CAS  Google Scholar 

  106. Cao, Y., Bly, R., Moore, W., Gao, Z., Cuitino, A. M. & Soboyejo W. On the measurement of human osteosarcoma cell elastic modulus using shear assay experiment. J. Mater. Sci. 18, 103–109 (2007).

    CAS  Google Scholar 

  107. Ferko, M. C., Bhatnagar, A., Garcia, M. B. & Butler, P. J. Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann. Biomed. Eng. 35, 858–859 (2007).

    Google Scholar 

  108. Jadhav, S., Eggleton, C. D. & Konstantopoulos, K. A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys. J. 88, 96–104 (2005).

    CAS  Google Scholar 

  109. Nelson, C. M. et al. Emerging patterns of growth controlled by multicellular form and mechanics. Proc. Nat. Acad. Sci. 102, 11594–11599 (2005).

    CAS  Google Scholar 

  110. McGarry, J. P., Murphy, B. P. & McHugh, P. E. Computational mechanics modeling of cell–substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids 53, 2597–2637 (2005).

    Google Scholar 

  111. Zhou, E. H., Lim, C. T. & Quek, S. T. Finite element simulation of the micropipette aspiration of a living cell undergoing large viscoelastic deformation. Mech. Adv.Mater. Struct. 12, 510–512 (2005).

    Google Scholar 

  112. Baaijens, F. P., Trickey, W. R., Laursen, T. A. & Guilak, F. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte. Ann. Biomed. Eng. 33, 494–501 (2005).

    Google Scholar 

  113. Trickey, W. R., Baaijens, F. P., Laursen, T. A., Alexopoulos, L. G. & Guilak, F. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. 39, 78–87 (2006).

    Google Scholar 

  114. Haidar, M. A. & Guilak, F. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem. J. Biomech. Eng. 122, 236–44 (2000).

    Google Scholar 

  115. Mills, J. P., Qie, L., Dao, M., Lim, C. T. & Suresh, S. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosys. 1, 169–180 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. W. Hutchinson, R. D. Kamm, M. R. K. Mofrad, L. Mahadevan, A. Boloori, C. M. Stultz, M. J. Buehler, A. Sadrzadeh, B. A. Tafti and V. S. Deshpande for many insightful discussions, and N. Movaghar for her help with the illustrations. This work has been supported by the School of Engineering and Applied Sciences, Harvard University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Vaziri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaziri, A., Gopinath, A. Cell and biomolecular mechanics in silico. Nature Mater 7, 15–23 (2008). https://doi.org/10.1038/nmat2040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing