Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable electronic interfaces between bulk semiconductors and ligand-stabilized nanoparticle assemblies

Abstract

Interfaces between nanoscale and bulk electroactive materials are important for the design of electronic devices using solution-processed nanoparticles. We report that thin films of hexanethiolate-capped gold nanoparticles with a core diameter of 2.1±0.4 nm deposited onto n-InP wafers form Schottky contacts whose barrier height can be actively tuned from 0.27±0.03 to 1.11±0.09 eV by electrochemically adjusting the nanoparticle Fermi level. This result is remarkable because interfacial barriers at conventional metal–semiconductor contacts are largely insensitive to the initial Fermi level of the metal. Furthermore, it highlights two general features of solution-processed nanoparticle assemblies in comparison with traditional bulk electronic materials: (1) the ability of ions to permeate the nanoparticle assembly enables the electrochemical injection of charges and hence active control of the Fermi level, and (2) ligand passivation of nanoparticle surfaces prevents interfacial reactions with the semiconductor that could otherwise lead to strong Fermi-level pinning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy band diagrams for the formation of an ideal n-type semiconductor–metal interface.
Figure 2: Nanoparticle electrochemistry.
Figure 3: Cross-section schematic diagram of the AuNP–InP device.
Figure 4: Current–voltage analysis.
Figure 5: Mott–Schottky analysis.

Similar content being viewed by others

References

  1. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  2. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  3. Gur, I., Fromer, N. A., Geier, M. L. & Alivisatos, A. P. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005).

    Article  CAS  Google Scholar 

  4. van Staveren, M. P. J., Brom, H. B. & de Jongh, L. J. Metal-cluster compounds and universal features of the hopping conductivity of solids. Phys. Rep. 208, 1–96 (1991).

    Article  CAS  Google Scholar 

  5. Yu, D., Wang, C. J., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).

    Article  Google Scholar 

  6. Banin, U. & Millo, O. Tunneling and optical spectroscopy of semiconductor nanocrystals. Annu. Rev. Phys. Chem. 54, 465–492 (2003).

    Article  CAS  Google Scholar 

  7. Klein, D. L., McEuen, P. L., Katari, J. E. B., Roth, R. & Alivisatos, A. P. An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68, 2574–2576 (1996).

    Article  CAS  Google Scholar 

  8. Walzer, K., Marx, E., Greenham, N. C. & Stokbro, K. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs. Surf. Sci. 532, 795–800 (2003).

    Article  Google Scholar 

  9. Lee, T. et al. Electronic properties of metallic nanoclusters on semiconductor surfaces: Implications for nanoelectronic device applications. J. Nanopart. Res. 2, 345–362 (2000).

    Article  CAS  Google Scholar 

  10. Sze, S. M. Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  11. Rhoderick, E. H. & Williams, R. H. Metal–Semiconductor Contacts (Oxford Univ. Press, Oxford, 1988).

    Google Scholar 

  12. Lonergan, M. C. A tunable diode based on an inorganic semiconductor|conjugated polymer interface. Science 278, 2103–2106 (1997).

    Article  CAS  Google Scholar 

  13. Sailor, M. J., Klavetter, F. L., Grubbs, R. H. & Lewis, N. S. Electronic properties of junctions between silicon and organic conducting polymers. Nature 346, 155–157 (1990).

    Article  CAS  Google Scholar 

  14. Daniels-Hafer, C., Jang, M., Boettcher, S. W., Danner, R. G. & Lonergan, M. C. Tuning charge transport at the interface between indium phosphide and a polypyrrole–phosphomolybdate hybrid through manipulation of electrochemical potential. J. Phys. Chem. B 106, 1622–1636 (2002).

    Article  CAS  Google Scholar 

  15. Nozik, A. J. & Memming, R. Physical chemistry of semiconductor–liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996).

    Article  CAS  Google Scholar 

  16. Pomykal, K. E. & Lewis, N. S. Measurement of interfacial charge-transfer rate constants at n-type InP/CH3OH junctions. J. Phys. Chem. B 101, 2476–2484 (1997).

    Article  CAS  Google Scholar 

  17. Fajardo, A. M. & Lewis, N. S. Free-energy dependence of electron-transfer rate constants at Si/liquid interfaces. J. Phys. Chem. B 101, 11136–11151 (1997).

    Article  CAS  Google Scholar 

  18. Yu, D., Wang, C. J. & Guyot-Sionnest, P. n-Type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).

    Article  CAS  Google Scholar 

  19. Wehrenberg, B. L. & Guyot-Sionnest, P. Electron and hole injection in PbSe quantum dot films. J. Am. Chem. Soc. 125, 7806–7807 (2003).

    Article  CAS  Google Scholar 

  20. Hicks, J. F., Miles, D. T. & Murray, R. W. Quantized double-layer charging of highly monodisperse metal nanoparticles. J. Am. Chem. Soc. 124, 13322–13328 (2002).

    Article  CAS  Google Scholar 

  21. Chen, S. W. & Murray, R. W. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. J. Phys. Chem. B 103, 9996–10000 (1999).

    Article  CAS  Google Scholar 

  22. Reiss, H. The Fermi level and the redox potential. J. Phys. Chem. 89, 3783–3791 (1985).

    Article  CAS  Google Scholar 

  23. Wuelfing, W. P., Green, S. J., Pietron, J. J., Cliffel, D. E. & Murray, R. W. Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J. Am. Chem. Soc. 122, 11465–11472 (2000).

    Article  CAS  Google Scholar 

  24. Pietron, J. J., Hicks, J. F. & Murray, R. W. Using electrons stored on quantized capacitors in electron transfer reactions. J. Am. Chem. Soc. 121, 5565–5570 (1999).

    Article  CAS  Google Scholar 

  25. Brennan, J. L. et al. Electron hopping dynamics in monolayer-protected Au cluster network polymer films by rotated disk electrode voltammetry. Anal. Chem. 76, 5611–5619 (2004).

    Article  CAS  Google Scholar 

  26. Tung, R. T. Electron transport at metal–semiconductor interfaces—general theory. Phys. Rev. B 45, 13509–13523 (1992).

    Article  CAS  Google Scholar 

  27. Yu, A. Y. C. & Snow, E. H. Surface effects on metal–silicon contacts. J. Appl. Phys. 39, 3008–3016 (1968).

    Article  CAS  Google Scholar 

  28. Newman, N., Kendelewicz, T., Bowman, L. & Spicer, W. E. Electrical study of Schottky-barrier heights on atomically clean and air-exposed n-InP (110) surfaces. Appl. Phys. Lett. 46, 1176–1178 (1985).

    Article  CAS  Google Scholar 

  29. Gu, Y., Lin, Z., Butera, R. A., Smentkowski, V. S. & Waldeck, D. H. Preparation of self-assembled monolayers on InP. Langmuir 11, 1849–1851 (1995).

    Article  CAS  Google Scholar 

  30. Lunt, S. R., Santangelo, P. G. & Lewis, N. S. Passivation of GaAs surface recombination with organic thiols. J. Vac. Sci. Technol. B 9, 2333–2336 (1991).

    Article  CAS  Google Scholar 

  31. Sailor, M. J. et al. Thin fims of n-Si/poly-(CH3)3Si-cyclooctatetraene-conducting-polymer solar cells and layered structures. Science 249, 1146–1149 (1990).

    Article  CAS  Google Scholar 

  32. Schaaff, T. G., Shafigullin, M. N., Khoury, J. T., Vezmar, I. & Whetten, R. L. Properties of a ubiquitous 29 kDa Au:SR cluster compound. J. Phys. Chem. B 105, 8785–8796 (2001).

    Article  CAS  Google Scholar 

  33. Wessels, J. M. et al. Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J. Am. Chem. Soc. 126, 3349–3356 (2004).

    Article  CAS  Google Scholar 

  34. Bard, A. J. & Faulkner, L. R. Electrochemical Methods (Wiley, New York, 2001).

    Google Scholar 

  35. Reiss, H. & Heller, A. The absolute potential of the standard hydrogen electrode—a new estimate. J. Phys. Chem. 89, 4207–4213 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. McFarland, H. Nienhaus, N. Zheng and A. Ivanovskaya for insightful discussion. This work was supported by the NSF under awards DMR-02-33728 and ECCS-0609485, the Air Force Research Laboratory under agreement FA8650-05-1-5041 and the US Army Research Office via the Institute for Collaborative Biotechnologies through grant DAAD19-03D-0004, and made use of the MRL central facilities supported by the MRSEC Program of the NSF under award DMR-05-20415. S.W.B. thanks the NSF for a Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galen D. Stucky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S3 (PDF 867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boettcher, S., Strandwitz, N., Schierhorn, M. et al. Tunable electronic interfaces between bulk semiconductors and ligand-stabilized nanoparticle assemblies. Nature Mater 6, 592–596 (2007). https://doi.org/10.1038/nmat1943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing