Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys

Abstract

Dynamic strain ageing (DSA) is the phenomenon in which solute atoms diffuse around dislocations and retard dislocation motion, leading to negative strain-rate sensitivity (nSRS) and thus to material instabilities during processing, an important issue in commercial metal alloys. Here, we show the mechanism of DSA and nSRS on experimental strain-rate, temperature and stress scales for Al–Mg to be single-atomic-hop motion of solutes from the compression to the tension side of a dislocation core. We derive an analytic expression for the strengthening versus strain rate and temperature that justifies widely used phenomenological forms, provides specific dependences of the parameters on material properties and is supported by atomistic kinetic Monte Carlo simulations. Using literature material properties, the predicted strengthening quantitatively agrees with the experimentally derived behaviour of Al–2.5% Mg at 300 K, and qualitatively agrees with the strain rate and temperature ranges of DSA and nSRS in Al–Mg alloys. The analyses herein show a clear path for multiscale design, from quantum to continuum mechanics, of solute strengthening in face-centred-cubic metal alloys.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding energy of a Mg substitutional solute and an edge dislocation in Al versus Mg solute position.
Figure 2: Schematic diagrams of the core solute positions relative to a dislocation being driven to the right by an applied stress.
Figure 3: Contour map of Mg solute concentration after diffusion for a time Dbt/2b2=0.18 at 500 K as computed in the kMC model.
Figure 4: Change in binding energy (squares) and change in strength (circles) versus dimensionless time, as computed by kMC simulations at 300 K.
Figure 5: Strengthening parameter versus dislocation position during sliding.
Figure 6: Strength change versus strain rate over a range of temperatures (in K) as predicted by equation (8) (black lines), with parameters given in the text.

Similar content being viewed by others

References

  1. Hirth, J. P. & Lothe, J. Theory of Dislocations 2nd edn (Wiley, New York, 1982).

    Google Scholar 

  2. Robinson, J. M. & Shaw, M. P. Microstructural and mechanical influences on dynamic strain aging phenomena. Int. Mater. Rev. 39, 113–122 (1994).

    Article  Google Scholar 

  3. Cottrell, A. H. & Bilby, B. A. Dislocation theory of yielding and strain ageing of iron. Proc. R. Soc. A 62, 49–62 (1949).

    Google Scholar 

  4. Cottrell, A. H. Theory of brittle fracture in steel and similar metals. Trans. Met. Soc. AIME 212, 192–203 (1958).

    Google Scholar 

  5. Friedel, J. Dislocations (Addison-Wesley, New York, 1964).

    Google Scholar 

  6. Louat, N. On the theory of the Portevin-Le Châtelier effect. Scripta Metall. 15, 1167–1170 (1981).

    Article  Google Scholar 

  7. McCormick, P. G. A model for the Portevin-Le Châtelier effect in substitutional alloys. Acta Metall. 20, 351–354 (1972).

    Article  Google Scholar 

  8. van den Beukel, A. Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi A 30, 197–206 (1975).

    Article  Google Scholar 

  9. Estrin, Y. & Kubin, L. P. Collective dislocation behaviour in dilute alloys and the Portevin-Le Châtelier effect. J. Mech. Behav. Mater. 2, 255–292 (1989).

    Article  Google Scholar 

  10. Kubin, L. P. & Estrin, Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect. Acta Metall. Mater. 38, 697–708 (1990).

    Article  Google Scholar 

  11. Kubin, L. P. & Estrin, Y. The critical conditions for jerky flow: discussion and application to Cu-Mn solid solutions. Phys. Status Solidi B 172, 173–185 (1992).

    Article  Google Scholar 

  12. Estrin, Y. & Kubin, L. P. in Continuum Models for Materials with Microstructure (ed. Mühlhaus, H. B.) 395–450 (Wiley, Chichester, 1995).

    Google Scholar 

  13. Lebyodkin, M., Dunin-Barkovskii, L., Bréchet, Y., Kubin, L. & Estrin, Y. Kinetics and statistics of jerky flow: experiments and computer simulations. Mater. Sci. Eng. A 234–236, 115–118 (1997).

    Article  Google Scholar 

  14. Lebyodkin, M., Dunin-Barkovskii, L., Bréchet, Y., Estrin, Y. & Kubin, L. P. Spatio-temporal dynamics of the Portevin-Le Châtelier effect: experiment and modelling. Acta Mater. 48, 2529–2541 (2000).

    Article  Google Scholar 

  15. Zhang, S., Estrin, Y. & McCormick, P. G. The morphology of Portevin-Le Châtelier bands: finite element simulation for Al-Mg-Si. Acta Mater. 49, 1087–1094 (2001).

    Article  Google Scholar 

  16. Kok, S. et al. Spatial coupling in jerky flow using polycrystal plasticity. Acta Mater. 51, 3651–3662 (2003).

    Article  Google Scholar 

  17. Penning, P. Mathematics of the Portevin-Le Châtelier effect. Acta Metall. 20, 1169–1175 (1972).

    Article  Google Scholar 

  18. Fujikawa, S. & Hirano, K. Diffusion of 28Mg in aluminum. Mater. Sci. Eng. 27, 25–33 (1977).

    Article  Google Scholar 

  19. Picu, R. C. & Zhang, D. Atomistic study of pipe diffusion in Al-Mg alloys. Acta Mater. 52, 161–171 (2004).

    Article  Google Scholar 

  20. Picu, R. C. A mechanism for the negative strain-rate sensitivity of dilute solid solutions. Acta Mater. 52, 3447–3458 (2004).

    Article  Google Scholar 

  21. Rizzi, E. & Hahner, P. On the Portevin-Le Chatelier effect: theoretical modeling and numerical results. Int. J. Plast. 20, 121–165 (2004).

    Article  Google Scholar 

  22. Barnett, D. M., Oliver, W. C. & Nix, W. D. The binding force between an edge dislocation and a Fermi-Dirac solute atmosphere. Acta Metall. 30, 673–678 (1982).

    Article  Google Scholar 

  23. Barnett, D. M., Wong, G. & Nix, W. D. The binding force between a Peierls-Nabarro edge dislocation and a Fermi-Dirac solute atmosphere. Acta Metall. 30, 2035–2041 (1982).

    Article  Google Scholar 

  24. Klose, F. B. et al. Analysis of Portevin-Le Chatelier serrations of type B in Al-Mg. Mater. Sci. Eng. A 369, 76–81 (2004).

    Article  Google Scholar 

  25. Picu, R. C. et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater. Sci. Eng. A 390, 334–343 (2005).

    Article  Google Scholar 

  26. Olmsted, D., Curtin, W. A. & Hector, L. G. Molecular dynamics study of solute strengthening in Al/Mg alloys. J. Mech. Phys. Solids 54, 1763–1788 (2006).

    Article  Google Scholar 

  27. Fivel, M. C., Gosling, T. J. & Canova, G. R. Implementing image stresses in a 3D dislocation simulation. Model. Simul. Mater. Sci. Eng. 4, 581–596 (1996).

    Article  Google Scholar 

  28. Hiratani, M., Zbib, H. M. & Khaleel, M. A. Modeling of thermally activated dislocation glide and plastic flow through local obstacles. Int. J. Plast. 19, 1271–1296 (2003).

    Article  Google Scholar 

  29. Amodeo, R. J. & Ghoniem, N. M. Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys. Rev. B 41, 6958–6967 (1990).

    Article  Google Scholar 

  30. Devincre, B. & Condat, M. Model validation of a 3D simulation of dislocation dynamics. Acta Metall. Mater. 40, 2629–2637 (1992).

    Article  Google Scholar 

  31. Ercolessi, F. & Adams, J. B. Interatomic potentials from first-principles calculations: the force matching method. Europhys. Lett. 26, 583–588 (1994).

    Article  Google Scholar 

  32. Liu, X.-Y., Adams, J. B., Ercolessi, F. & Moriarty, J. A. EAM potential for magnesium from quantum mechanical forces. Model. Simul. Mater. Sci. Eng. 4, 293–303 (1996).

    Article  Google Scholar 

  33. Liu, X.-Y., Ohotnicky, P. P., Adams, J. B., Rohrer, C. L. & Hyland, R. W. Anisotropic surface segregation in Al-Mg alloys. Surf. Sci. 373, 357–370 (1997).

    Article  Google Scholar 

  34. Olmsted, D. L., Hector, L. G., Curtin, W. A. & Clifton, R. J. Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng. 13, 371–388 (2005).

    Article  Google Scholar 

  35. Labusch, R., Ahearn, J., Grange, G. & Haasen, P. in Rate Processes in Plastic Deformation: Proceedings from the John E. Dorn Symposium Vol 56 (eds Dorn, J. E., Li, J. C. M. & Mukherjee, A. K.) (American Society for Metals, Metals Park, Ohio, 1975).

    Google Scholar 

  36. Zaiser, M. Dislocation motion in a random solid solution. Phil. Mag. A 82, 2869–2883 (2002).

    Article  Google Scholar 

  37. Ionova, I. V. & Carter, E. A. Ridge method for finding saddle points on potential energy surfaces. J. Chem. Phys. 98, 6377–6386 (1993).

    Article  Google Scholar 

  38. Voter, A. F. in Radiation Effects in Solids (eds Sickafus, K. E. & Kotomin, E. A.) Ch. 1 (Springer, NATO Publishing Unit, Dordrecht, The Netherlands, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the General Motors/Brown Collaborative Research Laboratory on Computational Materials Science and the NSF Materials Research Science and Engineering Center on Micro and Nanomechanics of Materials at Brown University. W.A.C. thanks the John Simon Guggenheim Foundation for a fellowship, during which important components of this work were carried out, and C. Picu, B. Devincre and L. Kubin for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Curtin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtin, W., Olmsted, D. & Hector, L. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nature Mater 5, 875–880 (2006). https://doi.org/10.1038/nmat1765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing