Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gallium nitride single-photon source operating at 200 K

Abstract

Fundamentally secure quantum cryptography has still not seen widespread application owing to the difficulty of generating single photons on demand. Semiconductor quantum-dot structures have recently shown great promise as practical single-photon sources, and devices with integrated optical cavities and electrical-carrier injection have already been demonstrated. However, a significant obstacle for the application of commonly used III–V quantum dots to quantum-information-processing schemes is the requirement of liquid-helium cryogenic temperatures. Epitaxially grown gallium nitride quantum dots embedded in aluminium nitride have the potential for operation at much higher temperatures. Here, we report triggered single-photon emission from gallium nitride quantum dots at temperatures up to 200 K, a temperature easily reachable with thermo-electric cooling. Gallium nitride quantum dots also open a new wavelength region in the blue and near-ultraviolet portions of the spectrum for single-photon sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical structure of GaN/AlN self-assembled quantum dots.
Figure 2: Experimental set-up.
Figure 3: Excitation-power dependence.
Figure 4: Photon-correlation measurement under continuous-wave excitation.
Figure 5: Photon-correlation measurement under pulsed excitation.
Figure 6: Biexciton binding energy.

Similar content being viewed by others

References

  1. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  Google Scholar 

  2. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article  Google Scholar 

  3. Lounis, B. & Moerner, E. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article  Google Scholar 

  4. Brunel, C., Lounis, B., Tamarat, P. & Orrit, M. Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999).

    Article  Google Scholar 

  5. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    Article  Google Scholar 

  6. Strauf, S. et al. Quantum optical studies on individual acceptor bound excitons in a semiconductor. Phys. Rev. Lett. 89, 177403 (2002).

    Article  Google Scholar 

  7. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  Google Scholar 

  8. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001).

    Article  Google Scholar 

  9. Thompson, T. M. et al. Single-photon emission from exciton complexes in individual quantum dots. Phys. Rev. B 64, 201302 (2001).

    Article  Google Scholar 

  10. Arakawa, Y. & Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 40, 939–941 (1982).

    Article  Google Scholar 

  11. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

    Article  Google Scholar 

  12. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  Google Scholar 

  13. Brokmann, X., Giacobino, E., Dahan, M. & Hermier, J. P. Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals. Appl. Phys. Lett. 85, 712–714 (2004).

    Article  Google Scholar 

  14. Issac, A. & Borczykowski, C. Correlation between photoluminescence intermittency of CdSe quantum dots and self-trapped states in dielectric media. Phys. Rev. B 71, 161302 (2005).

    Article  Google Scholar 

  15. Sebald, K. et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920–2922 (2002).

    Article  Google Scholar 

  16. Nakamura, S., Pearton, S. & Fasol, G. The Blue Laser Diode (Springer, New York, 2000).

    Book  Google Scholar 

  17. Moriwaki, O., Someya, T., Tachibana, K., Ishida, S. & Arakawa, Y. Narrow photoluminescence peaks from localized states in InGaN quantum dot structures. Appl. Phys. Lett. 76, 2361–2363 (2004).

    Article  Google Scholar 

  18. Schömig, H. et al. Probing individual localization centers in an InGaN/GaN quantum well. Phys. Rev. Lett. 92, 106802 (2004).

    Article  Google Scholar 

  19. Kako, S., Hoshino, K., Iwamoto, S., Ishida, S. & Arakawa, Y. Exciton and biexciton luminescence from single hexagonal GaN/AlN self-assembled quantum dots. Appl. Phys. Lett. 85, 64–66 (2004).

    Article  Google Scholar 

  20. Santori, C. et al. Photon correlation studies of single GaN quantum dots. Appl. Phys. Lett. 87, 051916 (2005).

    Article  Google Scholar 

  21. Miyamura, M., Tachibana, K. & Arakawa, Y. High-density and size-controlled GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 80, 3937–3939 (2002).

    Article  Google Scholar 

  22. Hoshino, K., Kako, S. & Arakawa, Y. Formation and optical properties of stacked GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 85, 1262–1264 (2004).

    Article  Google Scholar 

  23. Bacher, G. et al. Biexciton versus exciton lifetime in a single semiconductor quantum dot. Phys. Rev. Lett. 83, 4417–4420 (1999).

    Article  Google Scholar 

  24. Satori, C., Solomon, G. S., Pelton, M. & Yamamoto, Y. Time-resolved spectroscopy of multiexcitonic decay in an InAs quantum dot. Phys. Rev. B 65, 073310 (2002).

    Article  Google Scholar 

  25. Gindele, F., Hidd, K., Langbein, W. & Woggon, U. Phonon interaction of single excitons and biexcitons. Phys. Rev. B 60, R2157–R2160 (2002).

    Article  Google Scholar 

  26. Stronscio, M. A. & Dutta, M. Phonons in Nanostructures (Cambridge Univ. Press, Cambridge, 2001).

    Book  Google Scholar 

  27. Kako, S., Miyamura, M., Tachibana, K., Hoshino, K. & Arakawa, Y. Size-dependent radiative decay time of excitons in GaN/AlN self-assembled quantum dots. Appl. Phys. Lett. 83, 984–986 (2003).

    Article  Google Scholar 

  28. Becher, C. et al. Nonclassical radiation from a single self-assembled InAs quantum dot. Phys. Rev. B 63, 121312 (2001).

    Article  Google Scholar 

  29. Regelman, D. V., Mizrahi, U., Gershoni, D. & Ehrenfreund, E. Semiconductor quantum dot: A quantum light source of multicolor photons with tunable statistics. Phys. Rev. Lett. 87, 257401 (2001).

    Article  Google Scholar 

  30. Moreau, E. et al. Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001).

    Article  Google Scholar 

  31. Stier, O., Grundmann, M. & Bimberg, D. Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Phys. Rev. B 59, 5688–5701 (1999).

    Article  Google Scholar 

  32. D’Amico, I. & Fossi, F. All-optical single-electron read-out devices based on GaN quantum dots. Appl. Phys. Lett. 81, 5213–5215 (2002).

    Article  Google Scholar 

  33. Rossi, F. The excitonic quantum computer. IEEE Trans. Nanotechnol. 3, 165–171 (2004).

    Article  Google Scholar 

  34. Founta, S. et al. Optical properties of GaN quantum dots grown on nonpolar (11-20) SiC by molecular-beam epitaxy. Appl. Phys. Lett. 86, 171901 (2005).

    Article  Google Scholar 

  35. Garro, N. et al. Reduction of the internal electric field in wurtzite a-plane GaN self-assembled quantum dots. Appl. Phys. Lett. 87, 011101 (2005).

    Article  Google Scholar 

  36. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

‘Nano-Photonic and Electron Devices Technology’, Focused Research and Development Project for the Realization of the World’s Most Advanced IT Nation, MEXT, supported this work. The authors thank T. Nakaoka and T. Saito for their technical support in the calculations. S.G. acknowledges financial support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Kako or Yasuhiko Arakawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kako, S., Santori, C., Hoshino, K. et al. A gallium nitride single-photon source operating at 200 K. Nature Mater 5, 887–892 (2006). https://doi.org/10.1038/nmat1763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing