Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide

Abstract

The supramolecular organization of organic semiconductors on the dielectric layer of thin-film field-effect transistors is a crucial factor in achieving good device performance. Charge transport in these devices occurs near the interface with the gate dielectric. By confocal spectroscopy and microscopy we study the supramolecular organization in ultra-thin films of a prototype organic semiconductor, α-sexithiophene, on silicon dioxide, a widely used transistor gate dielectric. We demonstrate that in submonolayer films of sexithiophene (T6), regions where the molecules stand on their long molecular axis coexist with regions where the molecules lie flat on the substrate. When the first monolayer is completed, all T6 molecules stand on the substrate, and the flat molecules detected in the submonolayer films are no longer present. In films thicker than two monolayers, the photoluminescence spectra of standing molecules show a molecular H-like aggregation as in the single crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topography and CLSM photoluminescence images of T6 submonolayer films.
Figure 2: CLSM photoluminescence image and spatially resolved PL spectra of a T6 ultra-thin film.
Figure 3: Comparison of the PL spectra of T6 in different aggregation forms, and the supramolecular organization of T6 submonolayer.
Figure 4: Multilayer films.

Similar content being viewed by others

References

  1. Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  CAS  Google Scholar 

  2. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F. & Schlom, D. G. Pentacene organic thin-film transistors - Molecular ordering and mobility. IEEE Electron Device Lett. 18, 87–89 (1997).

    Article  CAS  Google Scholar 

  3. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

  4. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin film. Nature 425, 158–162 (2003).

    Article  CAS  Google Scholar 

  5. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  6. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  7. Tsujimura, T. et al. A 20-inch oled display driven by super-amorphous-silicon technology. SID 2003 Tech. Digest 34, 6–9 (2003).

    Article  CAS  Google Scholar 

  8. Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    Article  CAS  Google Scholar 

  9. Sheraw, C. D. et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Appl. Phys. Lett. 80, 1088–1090 (2002).

    Article  CAS  Google Scholar 

  10. Mach, P., Rodriguez, S. J., Nortrup, R., Wiltzius, P. & Rogers, J. A. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors. Appl. Phys. Lett. 78, 3592–3594 (2001).

    Article  CAS  Google Scholar 

  11. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  CAS  Google Scholar 

  12. Swiggers, M. L. et al. Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics. Appl. Phys. Lett. 79, 1300–13002 (2001).

    Article  CAS  Google Scholar 

  13. Sundar, V. C. et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  CAS  Google Scholar 

  14. de Boer, R. W. I., Klapwijk, T. M. & Morpurgo, A. F. Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83, 4345–4347 (2003).

    Article  CAS  Google Scholar 

  15. Klauk, H. et al. High-mobility polymer gate dielectric pentacene thin film transistors. J. Appl. Phys. 92, 5259–5263 (2002).

    Article  CAS  Google Scholar 

  16. Horowitz, G. & Hajlaoui, M. E. Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv. Mater. 12, 1046–1050 (2000).

    Article  CAS  Google Scholar 

  17. Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  18. Muccini, M. et al. Interchain interaction in a prototypical conjugated oligomer from polarized absorption at 4.2 K: alpha-sexithienyl single crystal. J. Chem. Phys. 109, 10513–10520 (1998).

    Article  CAS  Google Scholar 

  19. Muccini, M. et al. Polarized fluorescence in alpha-sexithienyl single crystal at 4.2 K. J. Chem. Phys. 108, 7327–7333 (1998).

    Article  CAS  Google Scholar 

  20. Loi, M. A. et al. Primary optical excitations and excited-state interaction energies in sexithiophene. Phys. Rev. B 66, 113102 (2002).

    Article  Google Scholar 

  21. Horowitz, G., Fichou, D., Peng, X., Xu, Z. & Garnier, F. A field-effect transistor based on conjugated alpha-sexithyenil. Solid State Commun. 72, 381–384 (1989).

    Article  CAS  Google Scholar 

  22. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H. E. & Marks, T. J. Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414–9423 (2003).

    Article  CAS  Google Scholar 

  23. Ostoja, P. et al. Instability in electrical performance of organic semiconductor devices. Adv. Mater. Opt. Electron. 1, 127–132 (1992).

    Article  Google Scholar 

  24. Dinelli, F., Murgia, M., Levy, P., Cavallini, M. & Biscarini, F. Spatially correlated charge transport in organic thin film transistors. Phys. Rev. Lett. 92, 116802 (2004).

    Article  Google Scholar 

  25. Servet, B. et al. Polymorphism and charge-transport in vacuum-evaporated sexithiophene films. Chem. Mater. 6, 1809–1815, 1994.

    Article  CAS  Google Scholar 

  26. Ostoja, P. et al. Electrical characteristics of field-effect transistors formed with ordered α-sexithienyl. Synth. Met. 54, 447–452 (1993).

    Article  CAS  Google Scholar 

  27. Lovinger, A. J. et al. Morphology of alpha-hexathienyl thin-film-transistor films. J. Mater. Res. 10, 2558–2562 (1995).

    Article  Google Scholar 

  28. Biscarini, F., Zamboni, R., Samorì, P., Ostoja, P. & Taliani, C. Growth of conjugated oligomer thin-films studied by atomic-force microscopy. Phys. Rev. B 52, 14868–14877 (1995).

    Article  CAS  Google Scholar 

  29. Muccini, M., Murgia, M., Biscarini, F. & Taliani, C. Morphology controlled energy transfer in conjugated molecular thin films. Adv. Mater. 13, 355–358 (2001).

    Article  CAS  Google Scholar 

  30. Horowitz, G. et al. Growth and characterization of sexithiophene single-crystals. Chem. Mater. 7, 1337–1341 (1995).

    Article  CAS  Google Scholar 

  31. Loi, M. A., Da Como, E., Zamboni, R., & Muccini, M. Nanoscale femtosecond spectroscopy for material science and nanotechnology. Synth. Met. 139, 687–690 (2003).

    Article  CAS  Google Scholar 

  32. Degli Esposti, A., Fanti, M., Muccini, M., Taliani, C. & Ruani, G. The polarized infrared and Raman spectra of alpha-T6 single crystal: An experimental and theoretical study. J. Chem. Phys. 112, 5957–5969 (2000).

    Article  CAS  Google Scholar 

  33. Kouki, F., Spearman, P., Valat, P., Horowitz, G. & Garnier, F. Experimental determination of excitonic levels in alpha-oligothiophenes. J. Chem. Phys. 113, 385–391 (2000).

    Article  CAS  Google Scholar 

  34. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals (Oxford Univ. Press, New York, 1982).

    Google Scholar 

  35. Porzio, W., Destri, S., Mascherpa, M. & Brückner, S. Structural aspects of olygothiophene series from x-ray-powder diffraction data. Acta Polym. 44, 266–272 (1993).

    Article  CAS  Google Scholar 

  36. Loi, M. A. et al. Ultrafast formation of nonemissive species via intermolecular interaction in single crystals of conjugated molecules. Phys. Rev. Lett. 86, 732–735 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The valuable technical support of P. Fancello, P. Mei and T. Bonfiglioli is kindly acknowledged. We thank C. Taliani for useful discussions. Work was supported by the EU FET-IST program under contract IST-2001-33057 (ILO), IST-2001-38919 (PHOENIX) and by EU-G5RD-CT2000-00349 (MONA-LISA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Antonietta Loi or Michele Muccini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loi, M., da Como, E., Dinelli, F. et al. Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide. Nature Mater 4, 81–85 (2005). https://doi.org/10.1038/nmat1279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing