Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites

Abstract

There has been growing interest in incorporating single-wall carbon nanotubes (SWNTs) as toughening agents in brittle ceramics. Here we have prepared dense Al2O3/SWNT composites using the spark-plasma sintering (SPS) method. Vickers (sharp) and Hertzian (blunt) indentation tests reveal that these composites are highly contact-damage resistant, as shown by the lack of crack formation. However, direct toughness measurements, using the single-edge V-notch beam method, show that these composites are as brittle as dense Al2O3 (having a toughness of 3.22 MPa m0.5). This type of unusual mechanical behaviour was also observed in SPS-processed, dense Al2O3/graphite composites. We argue that the highly shear-deformable SWNTs or graphite heterogeneities in the composites help redistribute the stress field under indentation, imparting the composites with contact-damage resistance. These composites may find use in engineering and biomedical applications where contact loading is important.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bright-field TEM image of the Al2O3/SWNT powder blend.
Figure 2: Raman spectra from starting carbon materials and composites.
Figure 3: Bright-field TEM image of the Al2O3/SWNT composite.
Figure 4: SEM micrograph showing a fracture surface of the Al2O3/SWNT composite.
Figure 5: Low- and high-magnification SEM micrographs showing top views of Vickers indentation sites.
Figure 6: SEVNB toughness results for the dense Al2O3, the Al2O3/SWNT composite, and the Al2O3/graphite composite.
Figure 7: Top-view optical micrographs (left) and corresponding oblique-view SOIM topographs (right) of Hertzian indentation sites.

Similar content being viewed by others

References

  1. Zhan, G.-D., Kuntz, J.D., Wan, J. & Mukherjee, A.K. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Mater. 2, 38–42 (2003).

    Article  CAS  Google Scholar 

  2. Ruoff, R.S. & Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).

    Article  CAS  Google Scholar 

  3. Iijima, S., Brabec, C.H., Maiti, A. & Bernholc, Z.J. Structural flexibility of carbon nanotubes. J. Phys. Chem. 104, 2089–2092 (1996).

    Article  CAS  Google Scholar 

  4. Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996).

    Article  CAS  Google Scholar 

  5. Subramooney, S. Nanocarbons—structure, properties, and potential applications. Adv. Mater. 15, 1157–1475 (1998).

    Article  Google Scholar 

  6. Calvert, P. Recipe for strength. Nature 399, 210–211 (1999).

    Article  CAS  Google Scholar 

  7. Yu, M.F., Files, B.S., Arepalli, S. & Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  CAS  Google Scholar 

  8. Baughman, R.H., Zakhidov, A.A. & deHeer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  9. Ma, R.Z., Wu, J., Wei, B.Q., Liang, J. & Wu, D.H. Processing and properties of carbon nanotubes–nano-SiC ceramic. J. Mater. Sci. 33, 5243–5246 (1998).

    Article  CAS  Google Scholar 

  10. Peigney, A., Laurent, C.H., Flahaut, E. & Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 26, 677–683 (2000).

    Article  CAS  Google Scholar 

  11. Siegel, R.W. et al. Mechanical behavior of polymer and ceramic matrix nanocomposites. Scripta Mater. 44, 2061–2064 (2001).

    Article  CAS  Google Scholar 

  12. Xia, Z. et al. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52, 931–944 (2004).

    Article  CAS  Google Scholar 

  13. Bronikowski, M.J., Willis, P.A., Colbert, D.T., Smith, K.A. & Smalley, R.E. Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. 19, 1800–1805 (2001).

    Article  CAS  Google Scholar 

  14. Lawn, B.R. Fracture of Brittle Solids 2nd edn (Cambridge Univ. Press, Cambridge, UK, 1993).

    Book  Google Scholar 

  15. Evans, A.G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73, 187–206 (1990).

    Article  CAS  Google Scholar 

  16. Padture, N.P. In situ-toughened silicon carbide. J. Am. Ceram. Soc. 77, 519–523 (1994).

    Article  CAS  Google Scholar 

  17. Dresselhaus, M.S., Dresselhaus, G. & Eklund, P.C. Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

    Google Scholar 

  18. Ajayan, P.M., Schadler, L.S., Giannaris, C. & Rubio, A. Single-wall carbon nanotube-polymer composite: strength and weakness. Adv. Mater. 12, 750–753 (2000).

    Article  CAS  Google Scholar 

  19. Anstis, G.R., Chantikul, P., Marshall, D.B. & Lawn, B.R. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64, 533–538 (1981).

    Article  CAS  Google Scholar 

  20. Lawn, B.R., Padture, N.P., Cai, H. & Guiberteau, F. Making ceramics “ductile”. Science 263, 1114–1116 (1994).

    Article  CAS  Google Scholar 

  21. Guiberteau, F., Padture, N.P. & Lawn, B.R. Effect of grain size on the Hertzian contact damage in alumina. J. Am. Ceram. Soc. 77, 1825–1831 (1994).

    Article  CAS  Google Scholar 

  22. Jitcharoen, J., Padture, N.P., Giannakopoulos, A.E. & Suresh, S. Hertzian-crack suppression in ceramics with elastic-modulus-graded surfaces. J. Am. Ceram. Soc. 81, 2301–2308 (1998).

    Article  CAS  Google Scholar 

  23. Quinn, J.B., Sundar, V. & Lloyd, I.K. Influence of microstructure and chemistry on the fracture toughness of dental ceramics. Dental Mater. 19, 603–611 (2003).

    Article  CAS  Google Scholar 

  24. Padture, N.P. & Lawn, B.R. Fatigue in ceramics with interconnecting weak interfaces: A study using cyclic Hertzian contacts. Acta Metall. Mater. 43, 1609–1617 (1995).

    Article  CAS  Google Scholar 

  25. Nishida, T., Hanaki, T. & Pezzotti, G. Effect of root notch radius on the fracture toughness of a fine-grained alumina. J. Am. Ceram. Soc. 77, 606–608 (1994).

    Article  CAS  Google Scholar 

  26. Kübler, J. in Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409 (eds Salem, J. A., Quinn, G. D. & Jenkins, M. G.) (American Society for Testing and Materials, West Conshohocken, Pennsylvania, 2002).

    Google Scholar 

Download references

Acknowledgements

The authors thank S. Suresh and D. Chattopadhyay for fruitful discussions, and T. Nishimura for experimental assistance. Funding for this work was provided by the Office of Naval Research (through a subcontract from MIT; prime grant DURINT N00014-01-1-0808) and the University of Connecticut Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin P. Padture.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Padture, N. & Tanaka, H. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nature Mater 3, 539–544 (2004). https://doi.org/10.1038/nmat1161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing