Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chromatographic resolution on Sephadex A25 of the three nuclear RNA polymerases from sea urchin embryos.
Figure 2
Figure 3: General initiation factors and PIC assembly pathways for class III genes with internal promoter elements, and activation by a gene-specific factor.
Figure 4: General initiation factors and PIC assembly pathway for class II genes with a TATA-containing core promoter, and regulation by gene-specific factors and interacting cofactors.
Figure 5: Comparison of transcription factors and activation mechanisms in prokaryotes and eukaryotes.

References

  1. Widnell, C.C. & Tata, J.R. Studies on the stimulation by ammonium sulphate of the DNA-dependent RNA polymerase of isolated rat-liver nuclei. Biochim. Biophys. Acta 3, 478–492 (1966).

    Article  Google Scholar 

  2. Roeder, R.G. & Rutter, W.J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237 (1969).

    Article  CAS  Google Scholar 

  3. Roeder, R.G. & Rutter, W.J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl. Acad. Sci. USA 65, 675–682 (1970).

    Article  CAS  Google Scholar 

  4. Burgess, R.R., Travers, A.A., Dunn, J.J. & Bautz, E.K.F. Factor stimulating transcription by RNA polymerase. Nature 221, 43–46 (1969).

    Article  CAS  Google Scholar 

  5. Weinmann, R. & Roeder, R.G. Role of DNA-dependent RNA polymerase III in the transcription of the tRNA and 5S RNA genes. Proc. Natl. Acad. Sci. USA 71, 1790–1794 (1974).

    Article  CAS  Google Scholar 

  6. Weinmann, R., Raskas, H.J. & Roeder, R.G. Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc. Natl. Acad. Sci. USA 71, 3426–3430 (1974).

    Article  CAS  Google Scholar 

  7. Sklar, V.E.F., Schwartz, L.B. & Roeder, R.G. Distinct molecular structures of nuclear class I, II and III DNA-dependent RNA polymerases. Proc. Natl. Acad. Sci. USA 72, 348–352 (1975).

    Article  CAS  Google Scholar 

  8. Parker, C.S. & Roeder, R.G. Selective and accurate transcription of the Xenopus laevis 5S RNA genes in isolated chromatin by purifed RNA polymerase III. Proc. Natl. Acad. Sci. USA 74, 44–48 (1977).

    Article  CAS  Google Scholar 

  9. Ng, S.-Y., Parker, C.S. & Roeder, R.G. Transcription of cloned Xenopus 5S RNA genes by X. laevis RNA polymerase III in reconstituted systems. Proc. Natl. Acad. Sci. USA 76, 136–140 (1979).

    Article  CAS  Google Scholar 

  10. Weil, P.A., Segall, J., Harris, B., Ng, S.-Y. & Roeder, R.G. Faithful transcription of eukaryotic genes by RNA polymerase III in systems reconstituted with purified DNA templates. J. Biol. Chem. 254, 6163–6173 (1979).

    CAS  PubMed  Google Scholar 

  11. Weil, P.A., Luse, D.S., Segall, J. & Roeder, R.G. Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18, 469–484 (1979).

    Article  CAS  Google Scholar 

  12. Segall, J., Matsui, T. & Roeder, R.G. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255, 11986–11991 (1980).

    CAS  PubMed  Google Scholar 

  13. Matsui, T., Segall, J., Weil, P.A. & Roeder, R.G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996 (1980).

    CAS  PubMed  Google Scholar 

  14. Lassar, A.B., Martin, P.L. & Roeder, R.G. Transcription of class III genes: formation of preinitiation complexes. Science 222, 740–748 (1983).

    Article  CAS  Google Scholar 

  15. Sawadogo, M. & Roeder, R.G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165–175 (1985).

    Article  CAS  Google Scholar 

  16. Van Dyke, M.W., Roeder, R.G. & Sawadogo, M. Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. Science 241, 1335–1338 (1988).

    Article  CAS  Google Scholar 

  17. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P.A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 4, 549–561 (1989).

    Article  Google Scholar 

  18. Roeder, R.G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327–335 (1996).

    Article  CAS  Google Scholar 

  19. Nikolov, D.B. & Burley, S.K. RNA polymerase II transcription initiation: a structural view. Proc. Natl. Acad. Sci. USA 1, 15–22 (1997).

    Article  Google Scholar 

  20. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 5523, 1863–1876 (2001).

    Article  Google Scholar 

  21. Engelke, D.R., Ng, S.-Y., Shastry, B.S. & Roeder, R.G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19, 717–728 (1980).

    Article  CAS  Google Scholar 

  22. Ginsberg, A.M., King, B.O. & Roeder, R.G. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39, 479–489 (1984).

    Article  CAS  Google Scholar 

  23. Roeder, R.G. The role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spr. Harb. Symp. Quant. Biol. LXIII, 201–218 (1998).

    Article  Google Scholar 

  24. Flanagan, P.M., Kelleher, R.J. III, Sayre, M.H., Tschochner, H. & Kornberg, R.D. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 6317, 436–438 (1991).

    Article  Google Scholar 

  25. Meisterernst, M., Roy, A.L., Lieu, H.M. & Roeder, R.G. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66, 981–993 (1991).

    Article  CAS  Google Scholar 

  26. Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H. & Kornberg, R.D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 4, 599–608 (1994).

    Article  Google Scholar 

  27. Fondell, J.D., Ge, H. & Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  Google Scholar 

  28. Thompson, C.M., Koleske, A.J., Chao, D.M. & Young, R.A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 7, 1361–1375 (1993).

    Article  Google Scholar 

  29. Malik, S. & Roeder, R.G. Transcriptional regulation through mediator-like complexes in yeast and metazoan cells. Trends Biochem. Sci. 25, 277–283 (2000).

    Article  CAS  Google Scholar 

  30. Luo, Y., Fujii, H., Gerster, T. & Roeder, R.G. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 71, 231–241 (1992).

    Article  CAS  Google Scholar 

  31. Zheng, L., Roeder, R.G. & Luo, Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255–266 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank my mentors Bill Rutter and Don Brown for their inspiration and friendship and for the freedom to pursue my specific goals in their laboratories; my students and postdocs for their dedication and many contributions; my family for their unwavering support and understanding; and the many institutions that have supported my research over four decades.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeder, R. The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen. Nat Med 9, 1239–1244 (2003). https://doi.org/10.1038/nm938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing