Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of PDGFR as a receptor for AAV-5 transduction

Abstract

Understanding the process of vector transduction has important implications for the application and optimal use of a vector system for human gene therapy. Recent studies with vectors based on adeno-associated virus type 5 (AAV-5) have shown utility of this vector system in the lung, central nervous system, muscle and eye. To understand the natural tropism of this virus and to identify proteins necessary for AAV-5 transduction, we characterized 43 cell lines as permissive or nonpermissive for AAV-5 transduction and compared the gene expression profiles derived from cDNA microarray analyses of those cell lines. A statistically significant correlation was observed between expression of the platelet-derived growth factor receptor (PDGFR-α-polypeptide) and AAV-5 transduction. Subsequent experiments confirmed the role of PDGFR-α and PDGFR-β as receptors for AAV-5. The tropism of AAV-5 in vivo also correlated with the expression pattern of PDGFR-α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AAV-5 transduction profile and microarray-derived gene expression profiles for PDGFR-α and PDGFR-β.
Figure 2: SB203580 treatment of NCI60 cell lines HS578T, SNB19 and SF295, all of which are permissive for AAV-5 transduction.
Figure 3: AAV-5 transduction of HeLa and 32D cells expressing PDGFR-α, PDGFR-β or EGFR.
Figure 4: Ligand inhibition of AAV-5 binding and transduction.
Figure 5: AAV and PDGFR-α coprecipitation.
Figure 6: AAV-5 transduces PDGFR-α-expressing cells in the hippocampus.

Similar content being viewed by others

References

  1. Bantel-Schaal, U., Delius, H., Schmidt, R. & zur Hausen, H. Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J. Virol. 73, 939–947 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chiorini, J.A., Kim, F., Yang, L. & Kotin, R.M. Cloning and characterization of adeno-associated virus type 5. J. Virol. 73, 1309–1319 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chiorini, J.A., Yang, L., Liu, Y., Safer, B. & Kotin, R.M. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Virol. 71, 6823–6833 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Muramatsu, S., Mizukami, H., Young, N.S. & Brown, K.E. Nucleotide sequencing and generation of an infectious clone of adeno- associated virus 3. Virology 221, 208–217 (1996).

    Article  CAS  Google Scholar 

  5. Rutledge, E.A., Halbert, C.L. & Russell, D.W. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao, W. et al. Gene therapy vectors based on adeno-associated virus type 1. J. Virol. 73, 3994–4003 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao, G.P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA 99, 11854–11859 (2002).

    Article  CAS  Google Scholar 

  8. Qing, K. et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. 5, 71–77 (1999).

    Article  CAS  Google Scholar 

  9. Mizukami, H., Young, N.S. & Brown, K.E. Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology 217, 124–130 (1996).

    Article  CAS  Google Scholar 

  10. Summerford, C., Bartlett, J.S. & Samulski, R.J. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat. Med. 5, 78–82 (1999).

    Article  CAS  Google Scholar 

  11. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidson, B.L. et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 97, 3428–3432 (2000).

    Article  CAS  Google Scholar 

  13. Rabinowitz, J.E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801 (2002).

    Article  CAS  Google Scholar 

  14. Zabner, J. et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J. Virol. 74, 3852–3858 (2000).

    Article  CAS  Google Scholar 

  15. Hildinger, M. et al. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J. Virol. 75, 6199–6203 (2001).

    Article  CAS  Google Scholar 

  16. Kaludov, N., Brown, K.E., Walters, R.W., Zabner, J. & Chiorini, J.A. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. 75, 6884–6893 (2001).

    Article  CAS  Google Scholar 

  17. Walters, R.W. et al. Binding of Adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J. Biol. Chem. 276, 20610–20616 (2001).

    Article  CAS  Google Scholar 

  18. Ross, D.T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000).

    Article  CAS  Google Scholar 

  19. Zaharevitz, D.W., Holbeck, S.L., Bowerman, C. & Svetlik, P.A. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition. J. Mol. Graph. Model. 20, 297–303 (2002).

    Article  CAS  Google Scholar 

  20. Paull, K.D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl. Cancer Inst. 81, 1088–1092 (1989).

    Article  CAS  Google Scholar 

  21. Yarden, Y. & Ullrich, A. Growth factor receptor tyrosine kinases. Annu. Rev. Biochem. 57, 443–478 (1988).

    Article  CAS  Google Scholar 

  22. Williams, L.T. Signal transduction by the platelet-derived growth factor receptor involves association of the receptor with cytoplasmic molecules. Clin. Res. 37, 564–568 (1989).

    CAS  PubMed  Google Scholar 

  23. Matsui, T. et al. Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243, 800–804 (1989).

    Article  CAS  Google Scholar 

  24. Rosenfeld, M.E., Bowen-Pope, D.F. & Ross, R. Platelet-derived growth factor: morphologic and biochemical studies of binding, internalization, and degradation. J. Cell. Physiol. 121, 263–274 (1984).

    Article  CAS  Google Scholar 

  25. Nilsson, J., Thyberg, J., Heldin, C.H., Westermark, B. & Wasteson, A. Surface binding and internalization of platelet-derived growth factor in human fibroblasts. Proc. Natl. Acad. Sci. USA 80, 5592–5596 (1983).

    Article  CAS  Google Scholar 

  26. Wang, Y.Z., Zhang, P., Rice, A.B. & Bonner, J.C. Regulation of interleukin-1beta -induced platelet-derived growth factor receptor-alpha expression in rat pulmonary myofibroblasts by p38 mitogen-activated protein kinase. J. Biol. Chem. 275, 22550–22557 (2000).

    Article  CAS  Google Scholar 

  27. Fessler, M.B., Malcolm, K.C., Duncan, M.W. & Worthen, G.S. A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J. Biol. Chem. 277, 31291–31302 (2002).

    Article  CAS  Google Scholar 

  28. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24, 236–244 (2000).

    Article  CAS  Google Scholar 

  29. Lee, J.S. et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46, 627–638 (1994).

    CAS  PubMed  Google Scholar 

  30. Koo, H.M. et al. Enhanced sensitivity to 1-beta-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. Cancer Res. 56, 5211–5216 (1996).

    CAS  PubMed  Google Scholar 

  31. Georg-Fries, B., Biederlack, S., Wolf, J. & zur Hausen, H. Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus. Virology 134, 64–71 (1984).

    Article  CAS  Google Scholar 

  32. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  Google Scholar 

  33. Diehn, M. et al. SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res. 31, 219–223 (2003).

    Article  CAS  Google Scholar 

  34. Alisky, J.M. et al. Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport 11, 2669–2673 (2000).

    Article  CAS  Google Scholar 

  35. Oumesmar, B.N., Vignais, L. & Baron-Van Evercooren, A. Developmental expression of platelet-derived growth factor alpha-receptor in neurons and glial cells of the mouse CNS. J. Neurosci. 17, 125–139 (1997).

    Article  CAS  Google Scholar 

  36. Hosang, M. Characterization of a platelet-derived growth factor receptor on Swiss 3T3 cells by affinity crosslinking. J. Recept. Res. 8, 455–466 (1988).

    Article  CAS  Google Scholar 

  37. Daniel, T.O., Milfay, D.F., Escobedo, J. & Williams, L.T. Biosynthetic and glycosylation studies of cell surface platelet-derived growth factor receptors. J. Biol. Chem. 262, 9778–9784 (1987).

    CAS  PubMed  Google Scholar 

  38. Wickham, T.J., Mathias, P., Cheresh, D.A. & Nemerow, G.R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319 (1993).

    Article  CAS  Google Scholar 

  39. Kapeller, R., Chakrabarti, R., Cantley, L., Fay, F. & Corvera, S. Internalization of activated platelet-derived growth factor receptor- phosphatidylinositol-3′ kinase complexes: potential interactions with the microtubule cytoskeleton. Mol. Cell. Biol. 13, 6052–6063 (1993).

    Article  CAS  Google Scholar 

  40. Bantel-Schaal, U., Hub, B. & Kartenbeck, J. Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment. J. Virol. 76, 2340–2349 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Handelman for excellent technical assistance; S. Pillemer for help with statistical analysis; S. Leppla and B. Baum for discussion; S. Holbeck for help with the microarray analysis; and N. Lokker, M. Alimandi, G. Sherlock, A. Su, C. Lengel, C.H. Heldin and members of the Davidson laboratory for providing crucial reagents and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A Chiorini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquale, G., Davidson, B., Stein, C. et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 9, 1306–1312 (2003). https://doi.org/10.1038/nm929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing