Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells

Abstract

Systemic tolerance can be induced by the introduction of antigen into an immune-privileged site. Here we investigated the role of complement in the induction of tolerance after intraocular injection. We found that the development of antigen-specific tolerance is dependent on a complement activation product. The ligation of the complement C3 activation product iC3b to complement receptor type 3 (the iC3b receptor) on antigen-presenting cells resulted in the sequential production of transforming growth factor-β2 and interleukin-10, which is essential for the induction of tolerance. These observations may extend to the development of both neonatal tolerance and other forms of acquired tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of complement in the in vivo suppression of DTH.
Figure 2: Role of iC3b in suppression of DTH.
Figure 3: Effect of OX-42 (monoclonal antibody against CR3) on suppression of DTH.
Figure 4: Effect of iC3b-CR3 ligation on IL-10 and IL-12.
Figure 5: Analysis of IL-10 and TGF-β2 mRNA expression in OVA-PEC following incubation with iC3b.

Similar content being viewed by others

References

  1. Frank, M.M. & Fries, L.F. The role of complement in inflammation and phagocytosis. Immunol. Today 12, 322–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Thomlinson, S. Complement defense mechanisms. Curr. Opin. Immunol. 5, 83–89 (1993).

    Article  Google Scholar 

  3. Carroll, M.C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16, 545–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen, C.H., Fischer, E.M. & Leslie, R.G.Q. The role of complement in the acquired immune response. Immunology 100, 4–12 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arvieux, J., Yssel, H. & Colomb, M.G. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones. Immunology 65, 229–235 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dempsey, P.W., Allison, M.E.D., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Jacquier-Sarlin, M.R., Gabert, F.M., Villiers, M.-B. & Colomb, M.G. Modulation of antigen processing and presentation by covalently linked complement C3b fragment. Immunology 84, 164–170 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Streilein, J.W. Immunologic privilege of the eye. Springer Semin. Immunopathol. 21, 95–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan, H.J. & Streilein, J.W. Immune response to immunization via the anterior chamber of the eye. I. F1 lymphocyte-induced immune deviation. J. Immunol. 118, 809–814 (1977).

    CAS  PubMed  Google Scholar 

  10. Kaplan, H.J. & Streilein, J.W. Immune response to immunization via the anterior chamber of the eye. II. F1 lymphocyte-induced immune deviation. J. Immunol. 120, 689–693 (1978).

    CAS  PubMed  Google Scholar 

  11. Streilein, J.W. & Niederkorn, J.Y. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J. Exp. Med. 153, 1058–1067 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Wilbanks, G.A. & Streilein, J.W. Macrophages capable of inducing anterior chamber associated immune deviation demonstrate spleen-seeking migratory properties. Reg. Immunol. 4, 130–137 (1992).

    CAS  PubMed  Google Scholar 

  13. Wilbanks, G.A. & Streilein J.W. Characterization of suppressor cells in anterior chamber-associated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology 71, 383–389 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sonoda, K.-H., Exley, M., Snapper, S., Balk, S.P. & Stein-Streilein, J. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J. Exp. Med. 190, 1215–1225 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilbanks, G.A., Mammolenti, M. & Streilein, J.W. Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-β. Eur. J. Immunol. 22, 165–173 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. D'orazio, T.J. & Niederkorn, J.Y. Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology 95, 47–55 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Streilein, J.W. Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Curr. Opin. Immunol. 5, 428–432 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Hara, Y., Okamoto, S., Rouse, B. & Streilein, J.W. Evidence that peritoneal exudates cells cultured with eye-derived fluids are the proximate antigen-presenting cells in immune deviation of the ocular type. J. Immunol. 151, 5162–5170 (1993).

    CAS  PubMed  Google Scholar 

  19. Sohn, J.-H., Kaplan, H.J., Suk, H.-J., Bora, P.S. & Bora, N.S. Chronic low level complement activation within the eye is controlled by intraocular complement regulatory proteins. Invest. Ophthalmol. Vis. Sci. 41, 3492–3502 (2000).

    CAS  PubMed  Google Scholar 

  20. Kabat, E.A. & Mayer, M.M. in Experimental Immunohistochemistry (ed. Thomas, C.C.) 133–239 (Springfield, IL, 1961).

    Google Scholar 

  21. Diamond, M.S., Garcia-Aguilar, J., Bickford, J.K., Corbi, A.L. & Springer, T.A. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031–1043 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Foris, G., Fust, G. & Medgyesi, G.A. The effect of oligopeptides on the C3b receptor-mediated functions of rat macrophages. Immunol. Lett. 6, 7–11 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Simpson, A.E.C.M., Tomkins, P.T. & Cooper, K.L. An investigation of the temporal induction of cytokine mRNAs in LPS-challenged thioglycollate-elicited murine peritoneal macrophages using the reverse transcription polymerase chain reaction. Inflamm. Res. 46, 65–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Fritzinger, D.C., Bredehorst, R. & Vogel, C.W. Molecular cloning and derived primary structure of cobra venom factor. Proc. Natl. Acad. Sci. USA 91, 12775–12779 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wessels, M.R. et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc. Natl. Acad. Sci. USA 92, 11490–11494 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson, A.P., White, T.M. & Mason, D.W. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57, 239–247 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ross, G.D. & Lambris, J.D. Identification of a C3bi-specific membrane complement receptor that is expressed on lymphocytes, monocytes, neutrophils, and erythrocytes. J. Exp. Med. 155, 96–110 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ross, G.D. & Vetvicka, V. CR3 (CD11b, CD18): A phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin. Exp. Immunol. 92, 181–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taylor, A.W., Streilein, J.W. & Cousins, S.W. Identification of α-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr. Eye Res. 11, 1199–1206 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, A.W., Streilein, J.W. & Cousins, S.W. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J. Immunol. 153, 1080–1086 (1994).

    CAS  PubMed  Google Scholar 

  31. Cousins, S.W., McCabe, M.M., Danielpour, D. & Streilein, J.W. Identification of transforming growth factor-β as an immunosuppressive factor in aqueous humor. Invest. Ophthalmol. Vis. Sci. 32, 2201–2211 (1991).

    CAS  PubMed  Google Scholar 

  32. Streilein, J.W. Unraveling immune privilege. Science 270, 1158–1159 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R. & Ferguson, T.A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Hammerberg, C., Duraiswamy, N. & Cooper, K.D. Reversal of immunosuppression inducible through ultraviolet-exposed skin by in vivo anti-CD11b treatment. J. Immunol. 157, 5254–5262 (1996).

    CAS  PubMed  Google Scholar 

  35. Hammerberg, C., Katiyar, S.K., Carroll, M.C. & Cooper, K.D. Activated complement component 3 (C3) is required for ultraviolet induction of immunosuppression and antigenic tolerance. J. Exp. Med. 187, 1133–1138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsuji, R.F. et al. Requried early complement activation in contact sensitivity with generation of local C5-dependent chemotactic activity, and late T cell interferon γ: A possible initiating role of B cells. J. Exp. Med. 186, 1015–1026 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. D'orazio, T.J. & Niederkorn, J.Y. A novel role for TGF-β and IL-10 in the induction of immune privilege. J. Immunol. 160, 2089–2098 (1998).

    CAS  PubMed  Google Scholar 

  38. Karp, C.L. et al. Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida, Y. et al. Monocyte induction of IL-10 and down-regulation of IL-12 by iC3b deposited in ultraviolet-exposed human skin. J. Immunol. 161, 5873–5979 (1998).

    CAS  PubMed  Google Scholar 

  40. Kosiewicz, M., Alard, P. & Streilein, J.W. Alteration in cytokine production following intraocular injection of soluble protein antigen: impairment in IFN-γ and induction of TGF-β and IL-4 production. J. Immunol. 161, 5382–5390 (1998).

    CAS  PubMed  Google Scholar 

  41. Miller, A., Lider, O., Roberts, A.B., Sporn, M.B. & Weiner, H.L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc. Natl. Acad. Sci. USA 89, 421–425 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shankland, S.J. et al. Differential expression of transforming growth factor-β isoforms and receptors in experimental membranous nephropathy. Kidney Int. 50, 116–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kalli, K.R., Ahearn, J.M. & Fearon, D.T. Interaction of iC3b with recombinant isotypic and chimeric forms of CR2. J. Immunol. 147, 590–594 (1991).

    CAS  PubMed  Google Scholar 

  44. Ross, G.D. Analysis of the different types of leukocyte membrane complement receptors and their interaction with the complement system. J. Immunol. Methods 37, 197–211 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. McQuillen, D.P. et al. Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects. J. Infect. Dis. 179, 124–135 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J.P. Atkinson for critical review of the data and Y. Wang for help with RT–PCR analysis. This work was supported in part by EY09730, EY10543 and EY 13335, Commonwealth of Kentucky Research Challenge Trust Fund and Research to Prevent Blindness Inc., NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalini S. Bora.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, JH., Bora, P., Suk, HJ. et al. Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells. Nat Med 9, 206–212 (2003). https://doi.org/10.1038/nm814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing