Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells

Abstract

The Human Combinatorial Antibody Library (HuCAL) was screened for antibodies specific to human leukocyte antigen-DR (HLA-DR) that induce programmed death of lymphoma/leukemia cells expressing the target antigen. The active Fab fragments were affinity-matured, and engineered to IgG4 antibodies of sub-nanomolar affinity. The antibodies exhibited potent in vitro tumoricidal activity on several lymphoma and leukemia cell lines and on chronic lymphocytic leukemia patient samples. They were also active in vivo in xenograft models of non-Hodgkin lymphoma. Cell death occurred rapidly, without the need for exogenous immunological effector mechanisms, and was selective to activated/tumor-transformed cells. Although the expression of HLA-DR on normal hematopoietic cells is a potential safety concern, the antibodies caused no long-lasting hematological toxicity in primates, in vivo. Such monoclonal antibodies offer the potential for a novel therapeutic approach to lymphoid malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Killing efficiency of anti-HLA-DR ex vivo against CLL cells and in vivo in xenograft models.
Figure 2: Mechanism and selectivity of anti-HLA-DR-induced cell death.
Figure 3: Changes in blood lymphoid-cell counts of Cynomologus monkeys after treatment with antibody 1D09C3.

Similar content being viewed by others

References

  1. Vose, J.M. et al. Phase II study of Rituximab in combination with CHOP chemotherapy in patients with previously untreated, aggressive non-Hodgkin's lymphoma. J. Clin. Oncol. 19, 389–397 (2001).

    Article  CAS  Google Scholar 

  2. Dyer, M.J.S., Hale, G., Hayhoe, F.G.J. & Waldmann, H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73, 1431–1439 (1989).

    CAS  PubMed  Google Scholar 

  3. Tedder, T.F., Streuli, M., Schlossman, S.F. & Saito, H. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc. Nat. Acad. Sci. USA 85, 208–212 (1988).

    Article  CAS  Google Scholar 

  4. Peiper, S.C., Ashmun, R.A. & Look, A.T. Molecular cloning, expression, and chromosomal localization of a human gene encoding the CD33 myeloid differentiation antigen. Blood 72, 314–321, (1988).

    CAS  PubMed  Google Scholar 

  5. Kaufman, J.F., Auffray, C., Korman, A.J., Shackelford, D.A. & Strominger, J. The class II molecules of the human and murine major histocompatibility complex. Cell 36, 1–13 (1984).

    Article  CAS  Google Scholar 

  6. Vaickus, L., Jones, V.E., Morton, C.L., Whitford, K. & Bacon, R.N. Antiproliferative mechanism of anti-class II monoclonal antibodies. Cell Immunol. 119, 445–458 (1989).

    Article  CAS  Google Scholar 

  7. Kabelitz, D. & Janssen, O. Growth inhibition of Epstein-Barr virus transformed B cells by anti-HLA-DR antibody L243: Possible relationship to L243-induced down-regulation of CD23 antigen expression. Cell. Immunol. 120, 21–30 (1989).

    Article  CAS  Google Scholar 

  8. Newell, M.K., VanderWall, J., Beard, K.S. & Freed, J.H. Ligation of major histocompatiblity complex class II molecules mediates apoptotic cell death in resting B lymphocytes. Proc. Natl. Acad. Sci. USA 90, 10459–10463 (1993).

    Article  CAS  Google Scholar 

  9. Truman, J.-P., Ericson, M.L., Choqueux-Seebold, J.M., Charron, D.J. & Mooney, N.A. Lymphocyte programmed cell death is mediated via HLA class II DR. Intl. Immunol. 6, 887–896 (1994).

    Article  CAS  Google Scholar 

  10. Vidovic', D. & Toral, J. Selective apoptosis of neoplastic cells by the HLA-DR-specific monoclonal antibody. Cancer Lett. 128, 127–135 (1998).

    Article  CAS  Google Scholar 

  11. Bridges, S.H., Kruisbeek, A.M. & Longo, D.L. Selective in vivo antitumor effects of monoclonal anti-I-A antibody on B cell lymphoma. J. Immunol. 139, 4242–4249 (1987).

    CAS  PubMed  Google Scholar 

  12. Epstein, A.L. et al. Two new monoclonal antibodies, Lym-1 and Lym-2, reactive with human B-lymphocytes and derived tumors, with immunodiagnostic and immunotherapeutic potential. Cancer Res. 47, 830–840 (1987).

    CAS  PubMed  Google Scholar 

  13. Gingrich, R.D., Dahle, C.E., Hoskins, K.F. & Senneff, M.J. Identification and characterization of a new surface membrane antigen found predominantly on malignant B lymphocytes. Blood 75, 2375–2387 (1990).

    CAS  PubMed  Google Scholar 

  14. Yoshino, T. et al. Ligation of HLA class II molecules promotes sensitivity to CD95 (Fas antigen, APO-1)-mediated apoptosis. Eur. J. Immunol. 25, 2190–2194 (1995).

    Article  CAS  Google Scholar 

  15. Altomonte, M., Pucillo, C., Damante, G. & Maio, M. Cross-linking of HLA class II antigens modulates the release of tumor necrosis factor-α by the EBV-B lymphoblastoid cell line JY. J. Immunol. 151, 5115–5122 (1993).

    CAS  PubMed  Google Scholar 

  16. Drenou, B. et al. A caspase-independent pathway of MHC class II antigen-mediated apoptosis of human B lymphocytes. J. Immunol. 163, 4115–4124 (1999).

    CAS  PubMed  Google Scholar 

  17. Knappik, A. et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86 (2000).

    Article  CAS  Google Scholar 

  18. Billing, R. & Chatterjee, S. Prolongation of skin allograft survival in monkeys treated with anti-Ia and anti-blast/monocyte monoclonal antibodies. Transplant. Proc. 15, 649–650 (1983).

    Google Scholar 

  19. Jonker, M., Nooij, F.J.M., den Butter, G., van Lambalgen, R. & Fuccello, A.J. Side effects and immunogenicity of murine lymphocyte-specific monoclonal antibodies in subhuman primates. Transplantation 45, 677–682 (1988).

    Article  CAS  Google Scholar 

  20. Vidovic', D. et al. Down-regulation of class II major histocompatibility complex molecules on antigen presenting cells by antibody fragments. Eur. J. Immunol. 25, 3349–3355 (1995).

    Article  CAS  Google Scholar 

  21. Ito, K. et al. HLA-DR-IE chimeric class II transgenic, murine class II-deficient mice are susceptible to experimental allergic encephalomyelitis. J. Exp. Med. 183, 2635–2644 (1996).

    Article  CAS  Google Scholar 

  22. Krebs, B. et al. High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Meth. 254, 67–84 (2001).

    Article  CAS  Google Scholar 

  23. Marget, M. et al. Bypassing hybridoma technology: HLA-C reactive human single-chain antibody fragments (scFv) derived from a synthetic phage display library (HuCAL) and their potential to discriminate HLA class I specificities. Tissue Antigens 56, 1–9 (2000).

    Article  CAS  Google Scholar 

  24. Schier, R. et al. Isolation of high-affinity monomeric human anti-c-erbB2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43 (1996).

    Article  CAS  Google Scholar 

  25. Schier, R. et al. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567 (1996).

    Article  CAS  Google Scholar 

  26. Ferreira, M.U. & Katzin, A.M. The assessment of antibody affinity distribution by thiocyanate elution: A simple dose-response approach. J. Imm. Meth. 187, 297–305 (1995).

    Article  CAS  Google Scholar 

  27. Low, N.M., Holliger, P. & Winter, G. Mimicking somatic hypermutation: Affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260, 359–368 (1996)

    Article  CAS  Google Scholar 

  28. Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: Crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293, 865–881 (1999).

    Article  CAS  Google Scholar 

  29. Buhmann, R., Nolte, A., Westhaus, D., Emmerich, B. & Hallek, M., CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: Stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood 93, 1992–2002 (1999).

    CAS  PubMed  Google Scholar 

  30. Hong, D.-S., et al. Major histocompatibility complex class II-mediated inhibition of hematopoiesis in long-term marrow cultures involves apoptosis and is prevented by c-kit ligand. Blood 86, 3341–3352 (1995).

    CAS  PubMed  Google Scholar 

  31. Lee, J.W. et al. HLA-DR-triggered inhibition of hematopoiesis involves Fas/Fas ligand interactions and is prevented by c-kit ligand. J. Immunol. 159, 3211–3219 (1977).

    Google Scholar 

  32. DeNardo, S.J. et al. Treatment of B-cell malignancies with 131I Lym-1 monoclonal antibodies Int. J. Cancer Suppl. 3, 96–101 (1988).

    Article  CAS  Google Scholar 

  33. Link, B.K. et al. Anti-CD3-based bispecific antibody designed for the therapy of human B-cell malignancy can induce T-cell activation by antigen-dependent and antigen-independent mechanisms. Int. J. Cancer 77, 251–256 (1998).

    Article  CAS  Google Scholar 

  34. Gorga, J.C., Foran, J., Burakoff, S.J. & Strominger, J.L. Use of the HLA-DR antigens incorporated into liposomes to generate HLA-DR specific cytotoxic T lymphocytes. Meth. Enzymol. 108, 607–613 (1984).

    Article  CAS  Google Scholar 

  35. Virnekäs, B. et al. E. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucl. Acids Res. 22, 5600–5607 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Ito and M. Sandor for cell lines and antibodies; S. Messemer and L. Fontanelle for the xenograft experiments; and the entire team of technicians at MorphoSys AG for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan A. Nagy.

Ethics declarations

Competing interests

It is a policy at GPC that every employee receives a stock option upon employment. All authors affiliated with GPC Biotech AG, or GPC Biotech Inc., namely, Z.A.N., S.L., E.M.S., A.Z., C.B., K.L., B.R., S.A. and M.D. are holders of GPC stock options. To date, these authors, except C.B., are GPC employees. Authors affiliated with Morphosys AG, namely, B.H. C.L., R.R., S.R., E.T.-W., T.K. and M.T. are employees of Morphosys AG and hold stock options of Morphosys. S.Z. was employed at Morphosys AG while engaged in this project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, Z., Hubner, B., Löhning, C. et al. Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat Med 8, 801–807 (2002). https://doi.org/10.1038/nm736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing