Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo

Abstract

A major concern in cancer therapy is resistance of tumors such as glioblastoma to current treatment protocols. Here, we report that transfer of the gene encoding second mitochondria-derived activator of caspase (Smac) or Smac peptides sensitized various tumor cells in vitro and malignant glioma cells in vivo for apoptosis induced by death-receptor ligation or cytotoxic drugs. Expression of a cytosolic active form of Smac or cell-permeable Smac peptides bypassed the Bcl-2 block, which prevented the release of Smac from mitochondria, and also sensitized resistant neuroblastoma or melanoma cells and patient-derived primary neuroblastoma cells ex vivo. Most importantly, Smac peptides strongly enhanced the antitumor activity of Apo-2L/tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in an intracranial malignant glioma xenograft model in vivo. Complete eradication of established tumors and survival of mice was only achieved upon combined treatment with Smac peptides and Apo2L/TRAIL without detectable toxicity to normal brain tissue. Thus, Smac agonists are promising candidates for cancer therapy by potentiating cytotoxic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of Smac sensitizes for death receptor– or drug-induced apoptosis.
Figure 2: Smac peptides sensitize for death receptor– or drug-induced apoptosis.
Figure 3: Smac peptides enhance the antitumor effect of TRAIL in a human glioma xenograft model in vivo.
Figure 4: Smac peptides do not reverse the lack of toxicity of TRAIL on normal human cells and normal brain tissue.
Figure 5: llustration of apoptosis pathways.

Similar content being viewed by others

References

  1. Peto, J. Cancer epidemiology in the last century and the next decade. Nature 411, 390–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Ponder, B.A. Cancer genetics. Nature 411, 336–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Lowe, S.W. & Lin, A.W. Apoptosis in cancer. Carcinogenesis 21, 485–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson, D.W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–777 (2000).

    CAS  PubMed  Google Scholar 

  6. Herr, I. & Debatin, K.M. Cellular stress response and apoptosis in cancer therapy. Blood 98, 2603–2614 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mow, B.M., Blajeski, A.L., Chandra, J. & Kaufmann, S.H. Apoptosis and the response to anticancer therapy. Curr. Opin. Oncol. 13, 453–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Fulda, S., Susin, S.A., Kroemer, G. & Debatin, K.M. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res. 58, 4453–4460 (1998).

    CAS  PubMed  Google Scholar 

  9. Fulda, S., Meyer, E., Susin, S.A., Kroemer, G. & Debatin, K.M. Cell type specific activation of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20, 1063–1075 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Fulda, S. et al. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20, 5865–5877 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ashkenazi, A. & Dixit, V.M. Death receptors: Signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Walczak, H. & Krammer, P.H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 256, 58–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Thornberry, N. & Lazebnik, Y. Caspases: Enemies within. Science 281, 1312–1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kroemer, G. & Reed, J.C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Roy, S. & Nicholson, D. Cross-talk in cell death signaling. J. Exp. Med. 192, F21–F25 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antonsson, B. & Martinou, J.C. The Bcl-2 protein family. Exp. Cell Res. 256, 50–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Goyal, L. Cell death inhibition: Keeping caspases in check. Cell 104, 805–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Deveraux, Q.L. & Reed, J.C. IAP family proteins-suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Wagenknecht, B. et al. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. 6, 370–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Verhagen, A.M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Srinivasula, S.M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Green, D. Apoptotic pathways: Paper wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Fulda, S., Meyer, E. & Debatin, K.M. Overexpression of Bcl-2 inhibits TRAIL-induced apoptosis. Oncogene 21, 2283–2294 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Roth, W. et al. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in a thymic mice in the absence of neurotoxicity. Biochem. Biophys. Res. Commun. 265, 479–483 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Weissert, R. et al. MHC haplotype-dependent regulation of MOG-induced EAE in rats. J. Clin. Invest. 102, 1265–1273 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med. 5, 157–163 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Chuntharapai, A. et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J. Immunol. 166, 4891–4898 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Soengas, M.S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Lawrence, D. et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Med. 7, 383–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Ashkenazi, A. et al. Safety and anti-tumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagane, M., Huang, H.J. & Cavenee, W.K. The potential of TRAIL for cancer chemotherapy. Apoptosis 6, 191–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ichikawa, K. et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nature Med. 7, 954–960 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Deng, Y., Lin, Y. & Wu, X. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16, 33–45 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, L., Yu, J., Park, B., Kinzler, K. & Vogelstein, B. Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. LeBlanc, H. et al. Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Med. 8, 274–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X.D., Zhang, X.Y., Gray, C.P., Nguyen, T. & Hersey, P. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by Smac/DIABLO release from mitochondria. Cancer Res. 61, 7339–7348 (2001).

    CAS  PubMed  Google Scholar 

  41. DeAngelis, L.M. Brain tumors. N. Engl. J. Med. 344, 114–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Jeremias, I., Herr, I., Boehler, T. & Debatin, K.M. TRAIL / Apo-2-Ligand induced apoptosis in T-cells. Eur. J. Immunol. 28, 143–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Hanemann, C.O. et al. Improved culture methods to expand Schwann cells with altered growth behaviour from CMT1A patients. Glia 23, 89–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Lindgren, M., Hallbrink, M., Prochiantz, A. & Langel, U. Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Srinivasula, S.M. et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 275, 36152–36457 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P.H. Krammer for anti-FLICE antibody; O. Hanemann for human primary Schwann cells; X. Wang and E. Alnemri for anti-Smac antibody and Smac cDNA; A. Ashkenazi for Apo2L/TRAIL.0; and P. Miller-Rostek for technical assistance. This work has been partially supported by grants from the Deutsche Forschungsgemeinschaft, the Bundesministerium für Forschung and Technologie, the Wilhelm Sander-Stiftung and the European community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Michael Debatin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulda, S., Wick, W., Weller, M. et al. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8, 808–815 (2002). https://doi.org/10.1038/nm735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing