Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation

Abstract

Surgery or radiation therapy of metastatic cancer often damages lymph nodes, leading to secondary lymphedema. Here we show, using a newly established mouse model, that collecting lymphatic vessels can be regenerated and fused to lymph node transplants after lymph node removal. Treatment of lymph node–excised mice with adenovirally delivered vascular endothelial growth factor-C (VEGF-C) or VEGF-D induced robust growth of the lymphatic capillaries, which gradually underwent intrinsic remodeling, differentiation and maturation into functional collecting lymphatic vessels, including the formation of uniform endothelial cell-cell junctions and intraluminal valves. The vessels also reacquired pericyte contacts, which downregulated lymphatic capillary markers during vessel maturation. Growth factor therapy improved the outcome of lymph node transplantation, including functional reconstitution of the immunological barrier against tumor metastasis. These results show that growth factor–induced maturation of lymphatic vessels is possible in adult mice and provide a basis for future therapy of lymphedema.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional maturation of a newly formed lymphatic vessel network and amelioration of lymphedema after lymph node removal in AdVEGF-C/D–transduced mice.
Figure 2: Short-term VEGF-C stimulation induces endothelial sprouting and leakage in collecting lymphatic vessels.
Figure 3: Maturation of lymphatic endothelial junctions in VEGF-C treated axillas.
Figure 4: Newly generated lymphatic endothelium becomes associated with SMCs, which regulate expression of the lymphatic capillary marker LYVE-1.
Figure 5: Lymphatic valves form in VEGF-C–induced collecting lymphatic vessels.
Figure 6: AdVEGF-C–transduced lymph node transplants incorporate into the existing lymphatic vasculature and trap metastatic tumor cells.

Similar content being viewed by others

References

  1. Alitalo, K., Tammela, T. & Petrova, T.V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

    Article  CAS  Google Scholar 

  2. Mortimer, P.S. et al. The prevalence of arm oedema following treatment for breast cancer. Quart. J. Med. 89, 377–780 (1996).

    Article  Google Scholar 

  3. Clark, B., Sitzia, J. & Harlow, W. Incidence and risk of arm oedema following treatment for breast cancer: a three-year follow-up study. Quart. J. Med. 98, 343–348 (2005).

    Article  CAS  Google Scholar 

  4. Tabibiazar, R. et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med. 3, e254 (2006).

    Article  Google Scholar 

  5. Ferrell, R.E. et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum. Mol. Genet. 7, 2073–2078 (1998).

    Article  CAS  Google Scholar 

  6. Irrthum, A., Karkkainen, M.J., Devriendt, K., Alitalo, K. & Vikkula, M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am. J. Hum. Genet. 67, 295–301 (2000).

    Article  CAS  Google Scholar 

  7. Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet. 25, 153–159 (2000).

    Article  CAS  Google Scholar 

  8. Rockson, S.G. Lymphedema. Am. J. Med. 110, 288–295 (2001).

    Article  CAS  Google Scholar 

  9. Baumeister, R.G., Seifert, J. & Hahn, D. Autotransplantation of lymphatic vessels. Lancet 1, 147 (1981).

    Article  CAS  Google Scholar 

  10. Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA 98, 12677–12682 (2001).

    Article  CAS  Google Scholar 

  11. Szuba, A. et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J. 16, 1985–1987 (2002).

    Article  CAS  Google Scholar 

  12. Yoon, Y.S. et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J. Clin. Invest. 111, 717–725 (2003).

    Article  CAS  Google Scholar 

  13. Saaristo, A. et al. Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J. 18, 1707–1709 (2004).

    Article  CAS  Google Scholar 

  14. Ikomi, F. et al. Recanalization of the collecting lymphatics in rabbit hind leg. Microcirculation 13, 365–376 (2006).

    Article  Google Scholar 

  15. Saaristo, A. et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J. Exp. Med. 196, 719–730 (2002).

    Article  CAS  Google Scholar 

  16. Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286, 2511–2514 (1999).

    Article  CAS  Google Scholar 

  17. Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144, 789–801 (1999).

    Article  CAS  Google Scholar 

  18. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  Google Scholar 

  19. Enholm, B. et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ. Res. 88, 623–629 (2001).

    Article  CAS  Google Scholar 

  20. Rissanen, T.T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res. 92, 1098–1106 (2003).

    Article  CAS  Google Scholar 

  21. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  Google Scholar 

  22. Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 6, 1223–1231 (2001).

    Article  Google Scholar 

  23. Karpanen, T. et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am. J. Pathol. 169, 708–718 (2006).

    Article  CAS  Google Scholar 

  24. Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002).

    Article  CAS  Google Scholar 

  25. Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003).

    Article  CAS  Google Scholar 

  26. Schaper, W. & Scholz, D. Factors regulating arteriogenesis. Arterioscler. Thromb. Vasc. Biol. 23, 1143–1151 (2003).

    Article  CAS  Google Scholar 

  27. Garcia-Cardena, G., Comander, J., Anderson, K.R., Blackman, B.R. & Gimbrone, M.A., Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. USA 98, 4478–4485 (2001).

    Article  CAS  Google Scholar 

  28. Ng, C.P., Helm, C.L. & Swartz, M.A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68, 258–264 (2004).

    Article  Google Scholar 

  29. Ito, W.D. et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res. 80, 829–837 (1997).

    Article  CAS  Google Scholar 

  30. Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

    Article  CAS  Google Scholar 

  31. Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7, 192–198 (2001).

    Article  CAS  Google Scholar 

  32. Saaristo, A. et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am. J. Pathol. 169, 1080–1087 (2006).

    Article  CAS  Google Scholar 

  33. Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes. Dev. 19, 397–410 (2005).

    Article  Google Scholar 

  34. Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204, 2349–2362 (2007).

    Article  CAS  Google Scholar 

  35. Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6, 333–345 (2004).

    Article  CAS  Google Scholar 

  36. Paik, J.H. et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes. Dev. 18, 2392–2403 (2004).

    Article  CAS  Google Scholar 

  37. Armulik, A., Abramsson, A. & Betsholtz, C. Endothelial/pericyte interactions. Circ. Res. 97, 512–523 (2005).

    Article  CAS  Google Scholar 

  38. Petrova, T.V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).

    Article  CAS  Google Scholar 

  39. Mellor, R.H. et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 115, 1912–1920 (2007).

    Article  CAS  Google Scholar 

  40. Mebius, R.E., Streeter, P.R., Breve, J., Duijvestijn, A.M. & Kraal, G. The influence of afferent lymphatic vessel interruption on vascular addressin expression. J. Cell. Biol. 115, 85–95 (1991).

    Article  CAS  Google Scholar 

  41. Rabson, J.A., Geyer, S.J., Levine, G., Swartz, W.M. & Futrell, J.W. Tumor immunity in rat lymph nodes following transplantation. Ann. Surg. 196, 92–99 (1982).

    Article  CAS  Google Scholar 

  42. Becker, C., Assouad, J., Riquet, M. & Hidden, G. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann. Surg. 243, 313–315 (2006).

    Article  Google Scholar 

  43. Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–246 (2004).

    Article  CAS  Google Scholar 

  44. Kozaki, K. et al. Establishment and characterization of a human lung cancer cell line NCI-H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. Cancer Res. 60, 2535–2340 (2000).

    CAS  PubMed  Google Scholar 

  45. He, Y. et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 65, 4739–4746 (2005).

    Article  CAS  Google Scholar 

  46. Harrell, M.I., Iritani, B.M. & Ruddell, A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol. 170, 774–786 (2007).

    Article  Google Scholar 

  47. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).

    Article  CAS  Google Scholar 

  48. Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med. 194, 797–808 (2001).

    Article  CAS  Google Scholar 

  49. Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247–257 (2005).

    Article  CAS  Google Scholar 

  50. Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 5, 74–80 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Achen and S. Stacker for the VEGF-DΔNΔC construct; Y. Cao for the PDGF-B construct; P. Korpisalo for the PDGF-B adenovirus; D. Kerjaschki for human podoplanin antibodies; M. Takeichi and H. Semb for the N-cadherin antibody; C. Heckman and K. Helenius for comments on the manuscript; the Biomedicum Molecular Imaging Unit for microscope support; and M. Helanterä, P. Hyvärinen, S. Lampi, K. Makkonen, A. Malinen, T. Tainola, S. Wallin and W. Zheng for technical assistance. This work was supported by grants from the National Institutes of Health (5 R01 HL075183-02) and The European Union (Lymphangiogenomics, LSHG-CT-2004-503573). T.T. has been supported by the Biomedicum Helsinki Foundation, the Finnish Cancer Organizations, the Finnish Cultural foundation, Nylands Nation and the Paulo Foundation as well as the Helsinki Biomedical Graduate School.

Author information

Authors and Affiliations

Authors

Contributions

T.T. designed, directed and performed mouse ear, paw and tumor experiments, surgery, cell culture, immunohistochemistry and data analysis, as well as interpreted results, and wrote the paper; A.S. designed, directed and performed surgery, performed tumor experiments, analyzed data, interpreted results and wrote the paper; T.H. performed paw and tumor experiments, cell culture, immunohistochemistry and data analysis, and helped perform surgery; J.L. performed immunohistochemistry, data analysis and 3D image rendering; A.K. performed immunohistochemistry and data analysis; M.P. performed MRI imaging and data analysis; U.A.-R. designed, directed and performed MRI imaging and data analysis; S.Y.-H. developed and provided adenovirus vectors; T.V.P. generated and provided reagents and helped write the paper; K.A. designed experiments, interpreted results and wrote the paper.

Corresponding author

Correspondence to Kari Alitalo.

Ethics declarations

Competing interests

K.A. and S.Y.-H. are minor shareholders and boardmembers of Lymphatix, Ltd.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figs. 1–9 and Supplementary Methods (PDF 1454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tammela, T., Saaristo, A., Holopainen, T. et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13, 1458–1466 (2007). https://doi.org/10.1038/nm1689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1689

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing