Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling

Abstract

Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow–derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sonic hedgehog pathway is activated by myocardial ischemia.
Figure 2: Shh gene therapy reduces infarct size and preserves myocardial function after myocardial infarction.
Figure 3: Shh gene therapy restored myocardial function and perfusion in chronic ischemia.
Figure 4: Shh enhances contribution of bone marrow–derived EPCs to myocardial recovery.
Figure 5: Shh reduces cardiomyocyte apoptosis in vivo and in vitro.

Similar content being viewed by others

References

  1. Abraham, W.T. et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346, 1845–1853 (2002).

    Article  Google Scholar 

  2. Isner, J.M. & Losordo, D.W. Therapeutic angiogenesis for heart failure. Nat. Med. 5, 491–492 (1999).

    Article  CAS  Google Scholar 

  3. Losordo, D.W. et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105, 2012–2018 (2002).

    Article  CAS  Google Scholar 

  4. Fortuin, F.D. et al. One-year follow-up of direct myocardial gene transfer of vascular endothelial growth factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients. Am. J. Cardiol. 52, 436–439 (2003).

    Article  Google Scholar 

  5. Vale, P.R. et al. Randomized, single-blind, placebo-controlled pilot study of catheter- based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103, 2138–2143 (2001).

    Article  CAS  Google Scholar 

  6. Perin, E.C. et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107, 2294–2302 (2003).

    Article  Google Scholar 

  7. Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

    Article  Google Scholar 

  8. Kawamoto, A. et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468 (2003).

    Article  Google Scholar 

  9. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438 (1999).

    Article  CAS  Google Scholar 

  10. Yamaguchi, J. et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107, 1322–1328 (2003).

    Article  CAS  Google Scholar 

  11. Nusslein-Volhard, C.W.E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  12. Wang, M. et al. Induction of the dopaminergic neuron phenotype in the midbrain by sonic hedgehog protein. Nat. Med. 1, 1184–1188 (1995).

    Article  CAS  Google Scholar 

  13. Roelink, H. et al. Floor plate and motor neuron induction by Vhh-1, a vertebrate homologue of hedgehog expressed by the notochord. Cell 76, 761–775 (1994).

    Article  CAS  Google Scholar 

  14. Goodrich, L. & Scott, M. Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257 (1998).

    Article  CAS  Google Scholar 

  15. Johnson, R.L. & Tabin, C.J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  Google Scholar 

  16. Pepicelli, C.V., Lewis, P.M. & McMahon, A.P. Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083–1086 (1998).

    Article  CAS  Google Scholar 

  17. Ramalho-Santos, M., Melton, D.A. & McMahon, A.P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

    CAS  PubMed  Google Scholar 

  18. St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058–1068 (1998).

    Article  CAS  Google Scholar 

  19. St-Jacques, B., Hammerschmidt, M. & McMahon, A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999).

    Article  CAS  Google Scholar 

  20. Pola, R. et al. The morphogen sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat. Med. 7, 706–711 (2001).

    Article  CAS  Google Scholar 

  21. Gepstein, L. et al. Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 98, 2055–2064 (1998).

    Article  CAS  Google Scholar 

  22. Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R.N. & Walsh, K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101, 660–667 (2000).

    Article  CAS  Google Scholar 

  23. Welch, S. et al. Cardiac-specific IGF-1 expression attenuates dilated cardiomyopathy in tropomodulin-overexpressing transgenic mice. Circ. Res. 90, 641–648 (2002).

    Article  CAS  Google Scholar 

  24. Zardoya, R., Abouheif, E. & Meyer, A. Evolution and orthology of hedgehog genes. Trends Genet. 12, 496–497 (1996).

    Article  CAS  Google Scholar 

  25. Bitgood, M.J. & McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Biol. 172, 126–138 (1995).

    Article  CAS  Google Scholar 

  26. Kogerman, P. et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat. Cell Biol. 1, 312–319 (1999).

    Article  CAS  Google Scholar 

  27. Sisson, J.C., Ho, K.S., Suyama, K. & Scott, M.P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell 90, 235–245 (1997).

    Article  CAS  Google Scholar 

  28. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fate and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  29. Pola, R. et al. Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 108, 479–485 (2003).

    Article  Google Scholar 

  30. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  Google Scholar 

  31. Asahara, T. et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228 (1999).

    Article  CAS  Google Scholar 

  32. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    Article  CAS  Google Scholar 

  33. Porter, J.A. et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86, 21–34 (1996).

    Article  CAS  Google Scholar 

  34. Kass, D.A. et al. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 76, 1422–1436 (1987).

    Article  CAS  Google Scholar 

  35. Crabos, M., Roth, M., Hahn, A.W. & Erne, P. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. J. Clin. Invest. 93, 2372–2378 (1994).

    Article  CAS  Google Scholar 

  36. Taylor, F.R. et al. Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40, 4359–4371 (2001).

    Article  CAS  Google Scholar 

  37. Aikawa, R. et al. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102, 2873–2879 (2000).

    Article  CAS  Google Scholar 

  38. Aikawa, R. et al. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest. 100, 1813–1821 (1997).

    Article  CAS  Google Scholar 

  39. Goukassian, D.A. et al. Engineering the response to vascular injury: divergent effects of deregulated E2F1 expression on vascular smooth muscle cells and endothelial cells result in endothelial recovery and inhibition of neointimal growth. Circ. Res. 93, 162–169 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the secretarial assistance of M. Neely and D. Costello in the preparation of this manuscript. This work was supported by US National Institutes of Health grants HL 63414, HL 80137, HL 53354, HL P01 66957 and HL 57516 (to D.W.L.) and American Heart Association grant 0325774T (to K.F.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W Losordo.

Ethics declarations

Competing interests

William Munger and Jeffery A. Porter are employees of Curis, Inc., which could benefit financially from commercialization of therapy studied in this article.

Supplementary information

Supplementary Fig. 1

Shh receptor Ptc1 is expressed in nucleus and cytoplasm of cardiomyocytes. (PDF 83 kb)

Supplementary Fig. 2

Shh receptor Ptc1 is expressed in nucleus and cytoplasm of cardiomyocytes. (PDF 89 kb)

Supplementary Fig. 3

Shh upregulates expression of multiple factors in adult fibroblasts. (PDF 58 kb)

Supplementary Methods (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusano, K., Pola, R., Murayama, T. et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11, 1197–1204 (2005). https://doi.org/10.1038/nm1313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing