Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Support for the equivalent light hypothesis for RP

A recently described mutation in the rod photoreceptor ion channel gene leading to retinitis pigmentosa suggests a mechanism for retinal degeneration.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Noell, W.K., Walker, V.S., Kang, B.S. & Herman, S. Retinal damage by light in rats. Invest. Ophthalmol. 5, 450–473 (1966).

    CAS  PubMed  Google Scholar 

  2. Papermaster, D.S. Necessary but insufficient. Nature Med. 1, 874–875 (1995).

    Article  CAS  Google Scholar 

  3. Fain, G.L. & Lisman, J.E. Photoreceptor degeneration in vitamin A deprivation and retinitis pigmentosa: The equivalent light hypothesis. Exp. Eye Res. 57, 335–340 (1993).

    Article  CAS  Google Scholar 

  4. Dryja, T.P. et al. Mutations in the gene encoding the a subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. natn. Acad. Sci. U.S.A. 92, 10177–10181 (1995).

    Article  CAS  Google Scholar 

  5. Sung, C.-H., Schneider, E.G., Agarwal, N., Papermaster, D.S. & Nathans, J. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc. natn. Acad. Sci. USA. 88, 8840–8844 (1991).

    Article  CAS  Google Scholar 

  6. Travis, G.H., Sutcliffe, J.G. & Bok, D. The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron 6, 61–70 (1991).

    Article  CAS  Google Scholar 

  7. Bauer, P.J. Evidence for two functionally different membrane fractions in bovine retinal rod outer segments. J. Physiol. 401, 309–327 (1988).

    Article  CAS  Google Scholar 

  8. Caretta, A. & Sabil, H. Visualization of cyclic nucleotide binding sites in vertebrate retina by fluorescence microscopy. J. Cell Biol. 108, 1517–1522 (1989).

    Article  CAS  Google Scholar 

  9. Bowes, C. et al. Retinal degeneration in the rd mouse is cuased by a defect in the β-subunit of rod cGMP-phosphodiesterase. Nature 347, 677–680 (1990).

    Article  CAS  Google Scholar 

  10. Rapp, L.M. & Williams, T.P. A parametric study of retinal light damage in albino and pigmented rats. in The Effects of Constant Light on Visual Processes (eds Willaims, T.P. & Baker, B.N.) 135–159 (Plenum, New York, 1980).

    Chapter  Google Scholar 

  11. Zhukovsky, E.A., Robinson, P.R. & Oprian, D. Transducin activation by rhodopsin without a covalent bond to the 11-cis-retinal chromophore. Science 251, 558–560 (1991).

    Article  CAS  Google Scholar 

  12. Rao, V.R., Cohen, G.B. & Oprian, D.D. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367, 639–642 (1994).

    Article  CAS  Google Scholar 

  13. Sieving, P.A. et al. Dark-light: Model for night-blindness from the human rhodopsin Gly90→Asp mutation. Proc. natn. Acad. Sci. U.S.A. 92, 880–884 (1995).

    Article  CAS  Google Scholar 

  14. Li, T., Franson, W.K., Gordon, J.W., Berson, E.X. & Dryja, T.P. Constitutive activation of phototransduction by K296E opsin is not a cause of photoreceptor degeneration. Proc. natn. Acad. Sci. U.S.A. 92, 3551–3555 (1995).

    Article  CAS  Google Scholar 

  15. Chen, J., Makino, C.L., Peachey, N.S., Baylor, D.A. & Simon, M.I. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267, 374–377 (1995).

    Article  CAS  Google Scholar 

  16. Li, Z., Kljavin, I.J. & Milam, A.H. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J. Neurosci. 15, 5429–5438 (1995).

    Article  CAS  Google Scholar 

  17. Masu, M. et al. Specific deficit of the ON Response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757–765 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisman, J., Fain, G. Support for the equivalent light hypothesis for RP. Nat Med 1, 1254–1255 (1995). https://doi.org/10.1038/nm1295-1254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1295-1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing