Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice

Abstract

Inherited deficiency of the CD40 ligand (X-linked hyper-IgM syndrome) is characterized by failure of immunoglobulin isotype switching and severe defects of cell-mediated immunity. To test the potential for gene transfer therapy to correct this disorder, we transduced murine bone marrow or thymic cells with a retroviral vector containing the cDNA for the murine CD40 ligand (CD40L) and injected them into CD40L –/– mice. Even low-level, constitutive expression of the transgene stimulated humoral and cellular immune functions in these mice. With extended follow-up, however, 12 of 19 treated mice developed T-lymphoproliferative disorders, ranging from polyclonal increases of lymphoblasts to overt monoclonal T-Lymphoblastic lymphomalymphomas that involved multiple organs. Our findings show that constitutive (rather than tightly regulated), low-level expression of CD40L can produce abnormal proliferative responses in developing T lymphocytes, apparently through aberrant interaction between CD40L + and TCRαβ + CD40 + thymocytes. Current methods of gene therapy may prove inappropriate for disorders involving highly regulated genes in essential positions in proliferative cascades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Demonstration of transgene expression.
Figure 2: Transduction efficiencies and RT–PCR analyses in mice transplanted with either corrected bone marrow (BMT) or vector control-transduced bone marrow.
Figure 3: Corrected bone marrow restores virus-specific immune responses.
Figure 4: Restoration of immunoglobulin subclass switching in response to specific antigens.
Figure 5: Phenotypic and genetic heterogeneity of thymic tumors.
Figure 6: Thymic homing of secondary lymphoma.
Figure 7: Expression of CD40L by thymic tumor cells.

Similar content being viewed by others

References

  1. Dunn, R.J., Luedecker, C.J., Haugen, H.S., Clegg, C.H., & Farr, A.G. Thymic overexpression of CD40 ligand disrupts normal thymic epithelial organization. J. Histochem. Cytochem. 45, 129-141 (1997 ).

    Article  CAS  Google Scholar 

  2. van Kooten. C. & Banchereau, J. CD40-CD40 ligand: a multifunctional receptor-ligand pair. Adv. Immunol. 61, 1-77 (1996).

    Article  CAS  Google Scholar 

  3. Hasbold, J., Johnson-Leger, C., Atkins, C.J., Clark, E.A. & Klaus, G.B. Properties of mouse CD40: cellular distribution of CD40 and B cell activation by monoclonal anti-mouse CD40 antibodies. Eur. J. Immunol. 24, 1835-1842 (1994).

    Article  CAS  Google Scholar 

  4. Grewal, I.S. & Flavell, R.A. The CD40 ligand - at the center of the immune universe? Immunol. Res. 16, 59-70 (1997).

    Article  CAS  Google Scholar 

  5. Stout, R.D. & Suttles, J. The many roles of CD40 in cell-mediated inflammatory responses. Immunol. Today 17, 487-492 (1996).

    Article  CAS  Google Scholar 

  6. Noelle, R.J. CD40 and its ligand in host defence. Immunity 4, 415-419 (1996).

    Article  CAS  Google Scholar 

  7. Hollenbaugh, D., Ochs, H.D., Noelle, R.J., Ledbetter, J.A. & Aruffo, A. The role of CD40 and its ligand in the regulation of the immune response. Immunol. Rev. 138, 23-37 (1994).

    Article  CAS  Google Scholar 

  8. Clark, E.A. & Ledbetter, J.A. How B and T cells talk to each other. Nature 367, 425-428 (1994).

    Article  CAS  Google Scholar 

  9. Kroczek, R.A. et al. Defective expression of CD40 ligand on T cells causes "X-linked immunodeficiency with hyper-IgM (HIGM1)". Immunol. Rev. 138, 39-59 (1994).

    Article  CAS  Google Scholar 

  10. Fuleihan, R.L. & Geha, R.S. X-linked hyperIgM. The Immunologist 5, 133-136 (1997).

    Google Scholar 

  11. Malech, H.L. et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl. Acad. Sci. USA 94, 12133-12138 (1997).

    Article  CAS  Google Scholar 

  12. Kohn, D.B. Gene therapy for hematopoietic and immune disorders. Bone Marrow Transplant. 18 (Suppl. 3), S55-S58 (1996).

    PubMed  Google Scholar 

  13. Renshaw, B.R. et al. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 180, 1889-1900 ( 1994).

    Article  CAS  Google Scholar 

  14. Strzadala, L., Miazek, A., Matuszyk, J. & Kisielow, P. Role of thymic selection in the development of thymic lymphomas in TCR transgenic mice. Int. Immunol. 9, 127-138 ( 1997).

    Article  CAS  Google Scholar 

  15. Tokoro, Y., Tsuda, S., Tanaka, S., Nakauchi, H. & Takahama, Y. CD3-induced apoptosis of CD4+ CD8+ thymocytes in the absence of clonotypic T cell antigen receptor. Eur. J. Immunol. 26, 1012-1017 (1996).

    Article  CAS  Google Scholar 

  16. Sentman, C.L., Shutter, J.R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S.J. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879-888 (1991).

    Article  CAS  Google Scholar 

  17. Peguet-Navarro, J. et al. CD40 ligation of human keratinocytes inhibits their proliferation and induces their differentiation. J. Immunol. 158, 144-152 (1997).

    CAS  PubMed  Google Scholar 

  18. Heath, A.W. et al. Antibodies to murine CD40 stimulate normal B lymphocytes but inhibit proliferation of B lymphoma cells. Cell. Immunol. 152, 468-480 (1993).

    Article  CAS  Google Scholar 

  19. Funakoshi, S. et al. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 83, 2787-2794 (1994).

    CAS  PubMed  Google Scholar 

  20. Shortman, K., Vremec, D. & Egerton, M. The kinetics of T cell antigen receptor expression by subgroups of CD4+8+ thymocytes: delineation of CD4+8+3(2+) thymocytes as post-selection intermediates leading to mature T cells. J. Exp. Med. 173, 323-332 ( 1991).

    Article  CAS  Google Scholar 

  21. Kisielow, P. & von Boehmer H. Development and selection of T cells: facts and puzzles. Adv. Immunol. 58, 87-209 ( 1995).

    Article  CAS  Google Scholar 

  22. Bunting, K.D., Sangster, M.Y., Ihle, J.N. & Sorrentino, B.P. Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nature Med. 4, 58- 64 (1998).

    Article  CAS  Google Scholar 

  23. Einerhand, M.P., Bakx, T.A., Kukler, A. & Valerio, D. Factors affecting the transduction of pluripotent hematopoietic stem cells: long-term expression of a human adenosine deaminase gene in mice. Blood 81, 254-263 (1993).

    CAS  PubMed  Google Scholar 

  24. Qazilbash, M.H. et al. Retroviral vector for gene therapy of X-linked severe combined immunodeficiency syndrome. J.Hematother. 4 , 91-98 (1995).

    Article  CAS  Google Scholar 

  25. Clegg, C.H. et al. Thymus dysfunction and chronic inflammatory disease in g39 transgenic mice. Int. Immunol. 9, 1111- 1122 (1997).

    Article  CAS  Google Scholar 

  26. Foy, T.M. et al. An essential role for gp39, the ligand for CD40, in thymic selection. J. Exp. Med. 182, 1377- 1388 (1995).

    Article  CAS  Google Scholar 

  27. Miller, G. in Virology 2nd edn. (eds. Fields, B.N. et al.) 563– 589 (Raven, New York, 1990).

    Google Scholar 

  28. Cayabyab, M., Phillips, J.H. & Lanier, L.L. CD40 preferentially costimulates activation of CD4+ T lymphocytes. J. Immunol. 152, 1523- 1531 (1994).

    CAS  PubMed  Google Scholar 

  29. Armitage, R.J. et al. CD40 ligand is a potent T cell growth factor. Eur. J. Immunol. 23, 2326-2331 (1993).

    Article  CAS  Google Scholar 

  30. Fanslow, W.C. et al. Recombinant CD40 ligand exerts potent biologic effects on T cells. J. Immunol. 152, 4262- 4269 (1994).

    CAS  PubMed  Google Scholar 

  31. Yang, Y. & Wilson, J.M. CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 273, 1862-1867 (1996).

    Article  CAS  Google Scholar 

  32. Zhou, T., Bluethmann, H., Eldridge, J., Berry, K. & Mountz, J.D. Origin of CD4CD8B220+ T cells in MRL-lpr/lpr mice; clues from a T cell receptor β transgenic mouse. J. Immunol. 150, 3651-3667 (1993).

    CAS  PubMed  Google Scholar 

  33. Zhou, T. et al. Kinetics of Fas-induced apoptosis in thymic organ culture. J. Clin. Immunol. 17, 74-84 ( 1997).

    Article  CAS  Google Scholar 

  34. Ezine, S. et al. A novel CD45RA+ CD4+ transient thymic subpopulation in MRL-lpr/lpr mice : its relation to non-proliferating CD4 CD8 CD45RA+ tumor cells. Int. Immunol. 5, 89- 96 (1993).

    Article  CAS  Google Scholar 

  35. Smith, G.S., Walford, R.L. & Mickey, R.M. Lifespan and incidence of cancer and other diseases in selected long-lived inbred mice and their F1 hybrids. J. Natl. Cancer Inst. 50, 1195 (1973).

    Article  CAS  Google Scholar 

  36. Hoag, W.G. Spontaneous cancer in mice. Ann. N.Y Acad. Sci. 108 , 805 (1963).

    Article  CAS  Google Scholar 

  37. Filipovich, A.H. et al. in The Non-Hodgkin's Lymphomas 2nd edn. (ed. McGrath, I.T.) 459-469 (Oxford University Press, New York, 1997).

    Google Scholar 

  38. Larson, R.C. et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO. J. 15, 1021-1027 (1996).

    Article  CAS  Google Scholar 

  39. Anderson, W.F. Human gene therapy. Nature 392, 25– 30 (1998).

    Article  CAS  Google Scholar 

  40. Grossmann, M.E., Brown, M.P. & Brenner, M.K. Antitumor responses induced by transgenic expression of CD40 ligand. Hum. Gene. Ther. 8, 1935 -1940 (1997).

    Article  CAS  Google Scholar 

  41. Farina, S.F., Girard, L.J., Vanin, E.F., Nienhuis, A.W. & Bodine, D.M. Dysregulated expression of GATA-1 following retrovirus-mediated gene transfer into murine hematopoietic stem cells increases erythropoiesis. Blood 86, 4124-4133 (1995).

    CAS  PubMed  Google Scholar 

  42. McLachlin, J.R., Mittereder, N., Daucher, M.B., Kadan, M. & Eglitis, M.A. Factors affecting retroviral vector function and structural integrity. Virology 195, 1-5 (1993).

    Article  CAS  Google Scholar 

  43. Hanenberg, H. et al. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nature Med. 2, 876-882 ( 1996).

    Article  CAS  Google Scholar 

  44. Heslop, H.E. et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Med. 2, 551-555 (1996).

    Article  CAS  Google Scholar 

  45. Sorrentino, B.P. et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99-103 (1992).

    Article  CAS  Google Scholar 

  46. Allan, W., Tabi, Z., Cleary, A. & Doherty, P.C. Cellular events in the lymph node and lung of mice with influenza. J. Immunol. 144, 3980-3986 (1990).

    CAS  PubMed  Google Scholar 

  47. Flynn, K.J. & Mullbacher, A. Memory alloreactive cytotoxic T cells do not require costimulation for activation in vitro. Immunol. Cell. Biol. 74, 413-420 (1996).

    Article  CAS  Google Scholar 

  48. Sangster, M., Smith, F.S., Coleclough, C. & Hurwitz, J.L. Human parainfluenza virus type 1 immunization of infant mice protects from subsequent sendai virus infection. Virology 212, 13-19 (1995).

    Article  CAS  Google Scholar 

  49. Harlow, E, & Lane, D. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 99 ( 1988).

    Google Scholar 

  50. Cole, G.A., Hogg, T.L. & Woodland, D.L. The MHC class I-restricted T cell response to Sendai virus infection in C57BL/6 mice: a single immunodominant epitope elicits an extremely diverse repertoire of T cells. Int. Immunol. 6, 1767-1775 (1994).

    Article  CAS  Google Scholar 

  51. Vanin, E.F., Kaloss, M., Broscius, C. & Nienhuis, A.W. Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J. Virol. 68, 4241-4250 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Daniels, C.A., Bodner, S. & Trofatter, K.F. Scanning and transmission electron microscopic studies of complement-mediated lysis and antibody-dependent cell-mediated cytolysis of herpes simplex virus-infected human fibroblasts. Am. J. Pathol . 100, 663-675 (1980 ).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Bodner for electron microscopy; M. Leventhal for immunohistochemistry; J. Gunelson, S. Wingo, A. Slusher and M. Holladay for technical assistance; and J. Gilbert for scientific editing. The work in the authors' laboratories is supported by United States Public Health Service grants AI-29579 to P.C.D.,AI-37597 to D.L.W., CA 78792 and CA 75014 to M.K.B., the Assisi Foundation and the American Lebanese Syrian Associated Charities(ALSAC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M., Topham, D., Sangster, M. et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med 4, 1253–1260 (1998). https://doi.org/10.1038/3233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing