Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Muzyczka, N. Use of adeno-associated virus as a general transduction vector for mammalian cells. [Review] Curr. Top. Microbiol. Immunol. 158, 97–129 (1992).

    CAS  PubMed  Google Scholar 

  2. Samulski, R.J. Adeno-associated virus-based vectors for human gene therapy. in Gene Therapy from Laboratory to the Clinic (ed. Hui, K.M.) 232–271 (World Scientific, Singapore, 1994).

    Chapter  Google Scholar 

  3. Flotte, T.R. et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 90, 10613–10617 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Monahan, P.E. et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther. (in the press).

  5. Kessler, P.D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiao, X. & Samulski, R.J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8090–8108 (1996).

    Google Scholar 

  7. Kaplitt, M.G. et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genet. 8, 148–154 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Snyder, R.O. et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nature Genet. 16, 270–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Xiao, X., Li, J., McCown, T.J. & Samulski, R.J. Gene transfer by adeno-associated virus vectors into the central nervous system. Exp. Neural. 144, 113–124 (1997).

    Article  CAS  Google Scholar 

  10. Samulski, R.J., Chang, L.S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Samulski, R.J., Chang, L.S. & Shenk, T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J. Virol. 63, 3822–3828 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark, K.R., Voulgaropoulou, F., Fraley, D.M. & Johnson, P.R. Cell lines for the production of recombinant adeno-associated virus. Hum. Gene Ther. 6, 1329–1341 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Flotte, T.R. et al. An improved system for packaging recombinant adeno-associated virus vectors capable of in vivo transduction. Gene Ther. 2, 29–37 (1995).

    CAS  PubMed  Google Scholar 

  14. Vincent, K.A., Piraino, S.T. & Wadsworth, S.C. Analysis of recombinant adeno-associated virus packaging and requirements for rep and cap gene products. J. Virol. 71, 1897–1905 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, J., Samulski, R.J. & Xiao, X. Role for highly regulated rep gene expression in adeno-associated virus vector production. J. Virol. 71, 5236–5243 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carter, B.J. Adeno-associated virus helper functions. in CRC Handbook of Parvoviruses 1 (ed. Tijssen, P.) 255–282 (CRC Press, Boca Raton, Florida, 1990).

    Google Scholar 

  17. McCoy, R.D. et al. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles. Hum. Gene Ther. 6, 1553–1560 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Ferrari, F.K., Samulski, T., Shenk, T. & Samulski, R.J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Snyder, R.O., Xiao, X. & Samulski, R.J. Production of recombinant adeno-associated viral vectors. in Current Protocols in Human Genetics (eds. Dracopoli, N. et al.) (John Wiley, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, F., Xiao, X., Mccarty, D. et al. New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors. Nat Med 3, 1295–1297 (1997). https://doi.org/10.1038/nm1197-1295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197-1295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing