Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skin graft tolerance across a discordant xenogeneic barrier

Abstract

Specific T–cell tolerance may be essential for successful xenotransplantation in humans. Grafting of thymectomized, T cell–depleted normal mice with xenogeneic fetal pig thymus and liver (FP THY/LIV) tissue results in the recovery of functional CD4 antigen–positive cells. We have tested T–cell tolerance by skin grafting. Donor–matched pig skin survived permanently (>200 days), whereas allogeneic mouse skin was rapidly rejected. Nontolerant control mice rejected pig skin within 26 days. Both porcine and murine histocompatibility class IIhigh cells were detected in long–term thymus grafts, and T–cell repertoire analyses suggested that tolerance to both donors and recipients developed, at least in part, by intragraft clonal deletion. This study demonstrates the principle that tolerance, measured by the stringent criterion of skin grafting, can be induced across a widely disparate species barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sykes, M., Lee, L.A. & Sachs, D.H. Xenograft tolerance. Immunol. Rev. 141, 245–276 (1994).

    Article  CAS  Google Scholar 

  2. Sachs, D.H., Sykes, M., Greenstein, J.L. & Cosimi, A.B. Tolerance and xenograft survival. Nature Med. 1, 969 (1995).

    Article  CAS  Google Scholar 

  3. Lunney, J.K. Characterization of swine leukocyte differentiation antigens. Immunol. Today 14, 147–148 (1993).

    Article  CAS  Google Scholar 

  4. Lee, L.A. et al. Specific tolerance across a discordant xenogeneic transplantation barrier. Proc. Natl. Acad. Sci. USA 91, 10864–10867 (1994).

    Article  CAS  Google Scholar 

  5. Yang, Y.-G., Ohta, S., Yamada, S., Shimizu, M. & Takagaki, Y. Diversity of T cell receptor δ-chain cDNA in the thymus of a one-month-old pig. J. Immunol. 155, 1981–1993 (1995).

    CAS  PubMed  Google Scholar 

  6. Sykes, M. Inducing specific tolerance across xenogeneic barrier. Xeno 2, 65–67 (1994).

    Google Scholar 

  7. Auchincloss, H.A. Why is cell-mediated xenograft rejection so strong? Xeno 3, 19–22 (1995).

    Google Scholar 

  8. Yamada, K., Sachs, D.H. & DerSimonian, H. Human anti-porcine xenogeneic T cell response: Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J. Immunol. 155, 5249–5256 (1995).

    CAS  PubMed  Google Scholar 

  9. Moses, R.D., Winn, H.J. & Auchincloss, H. Jr., Evidence that multiple defects in cell-surface molecule interactions across species differences are responsible for diminished xenogeneic T cell responses. Transplantation 53, 203–209 (1992).

    Article  CAS  Google Scholar 

  10. Ramsdell, F. & Fowlkes, B.J. Clonal deletion versus clonal anergy: The role of the thymus in inducing self tolerance. Science 248, 1342–1348 (1990).

    Article  CAS  Google Scholar 

  11. Kappler, J.W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    Article  CAS  Google Scholar 

  12. Burkly, L.C., Lo, D., Kanagawa, O., Brinster, R.l. & Flavell, R.A. T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I–E. Nature 342, 564 (1989).

    Article  CAS  Google Scholar 

  13. Webb, S., Morris, C. & Sprent, J. Extrathymic tolerance of mature T cells: Clonal elimination as a consequence of immunity. Cell 63, 1249–1256 (1990).

    Article  CAS  Google Scholar 

  14. Yin, D. & Fathman, C.G. CD4-positive suppressor cells block allotransplant rejection. J. Immunol. 154, 6339–6345 (1995).

    CAS  PubMed  Google Scholar 

  15. Davies, J.D., Leong, L.Y.W., Mellor, A., Cobbold, S.P. & Waldmann, H. T cell suppression in transplantation tolerance through linked recognition. J. Immunol. 156, 3602–3607 (1996).

    CAS  Google Scholar 

  16. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  Google Scholar 

  17. Sykes, M. Chimerism and central tolerance. Curr. Opin. Immunol. (in the press).

  18. Tomonari, K., Fairchild, S. & Rosenwasser, O.A. Influence of viral superantigens on Vβ-and Vα-specific positive and negative selection. Immunol. Rev. 131, 131–168 (1993).

    Article  CAS  Google Scholar 

  19. Tomonari, K. & Fairchild, S. The genetic basis of negative selection of TcrβV11+ T cells. Immunogenctics 33, 157–162 (1991).

    Article  CAS  Google Scholar 

  20. Dyson, P.J., Knight, A.M., Fairchild, S., Simpson, E. & Tomonari, K. Genes encoding ligands for deletion of Vβ11 T cells cosegregate with mammary tumour virus genomes. Nature 349, 531–532 (1991).

    Article  CAS  Google Scholar 

  21. Lenschow, D.J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 257, 789–792 (1992).

    Article  CAS  Google Scholar 

  22. Lafferty, K.J. A contemporary view of transplantation tolerance: An immunologist's perspective. Clin. Transplant. 8, 181–187 (1994).

    CAS  PubMed  Google Scholar 

  23. Weiens, P.W. et al. Tissue-specific differences in the establishment of tolerance. Transplantation 57, 1795–1798 (1994).

    Article  Google Scholar 

  24. Tomita, Y., Khan, A. & Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. J. Immunol. 153, 1087–1098 (1994).

    CAS  PubMed  Google Scholar 

  25. Tomita, Y., Lee, L.A. & Sykes, M. Engraftment of rat bone marrow and its role in negative selection of murine T cells in mice conditioned with a modified non-myeloablative regimen. Xenotransplant 1, 109–117 (1994).

    Article  Google Scholar 

  26. Grusby, M.J. & Glimcher, L.H. Immune responses in MHC class II-deficient mice. Ann. Rev. Immunol. 13, 417–435 (1995).

    Article  CAS  Google Scholar 

  27. Grusby, M.J. et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl. Acad. Sci. USA 90, 3913–3917 (1993).

    Article  CAS  Google Scholar 

  28. Modiglani, Y. et al. Lymphocytes selected in allogeneic thymic epithelium mediate dominant tolerance toward tissue grafts of the thymic epithelium haplotype. Proc. Natl. Acad. Sci. USA 92, 7555–7559 (1995).

    Article  Google Scholar 

  29. Salaun, J. et al. Thymic epithelium tolerizes for histocompatibility antigens. Science 247, 1471–1474 (1990).

    Article  CAS  Google Scholar 

  30. Ohki, H., Martin, C., Corbel, C. & Le Douarin, N.M. Tolerance induced by thymic epithelial grafts in birds. Science 237, 1032–1035 (1987).

    Article  CAS  Google Scholar 

  31. Martin, C., Ohki-Hamazaki, H., Corbel, C., Coltey, M. & Le Douarin, N.M. Successful xenogeneic transplantation in embryos: induction of tolerance by extrathymic chick tissue grafted into quail. Dev. Immunol. 1, 265–277 (1991).

    Article  CAS  Google Scholar 

  32. Salaun, J. et al. Transplantation tolerance is unrelated to superantigendependent deletion and anergy. Proc. Natl. Acad. Sci. USA 89, 10420–10424 (1992).

    Article  CAS  Google Scholar 

  33. Houssaint, E. & Flajnik, M. The role of thymic epithelium in the acquisition of tolerance. Immunol. Today 11, 357–360 (1990).

    Article  CAS  Google Scholar 

  34. Speiser, D.E. et al. Clonal deletion induced by either radioresistant thymic host cells or lymphohematopoietic donor cells at different stages of class I-restricted T cell ontogeny. J. Exp. Med. 175, 1277–1283 (1992).

    Article  CAS  Google Scholar 

  35. Lorenz, R.G. & Allen, P.M. Thymic cortical epithelial cells lack full capacity for antigen presentation. Nature 340, 557–559 (1989).

    Article  CAS  Google Scholar 

  36. Jenkinson, E.J., Anderson, G. & Owen, J.J.T. Studies on T cell maturation on defined thymic stromal cell populations in vitro. J. Exp. Med. 176, 845–853 (1992).

    Article  CAS  Google Scholar 

  37. Guery, J-C. & Adorini, L. Dendritic cells are the most efficient in presenting endogenous naturally processed self-epitopes to class II-restricted T cells. J. Immunol. 154, 536–544 (1995).

    CAS  PubMed  Google Scholar 

  38. Kyewski, B.A., Fathman, C.G. & Kaplan, H.S. Intrathymic presentation of circulating non-major histocompatibility complex antigens. Nature 308, 196–199 (1984).

    Article  CAS  Google Scholar 

  39. Miller, J.F.A.P. Studies on mouse leukaemia: The role of the thymus in leukaemogenesis by cell-free leukemic infiltrates. Br. J. Cancer 14, 93 (1960).

    Article  CAS  Google Scholar 

  40. Sykes, M. et al. Hematopoietic cells and radioresistant host elements influence natural killer cell differentiation. J. Exp. Med. 178, 223–229 (1993).

    Article  CAS  Google Scholar 

  41. Sharabi, Y., Aksentijevich, I., Sundt, T.M. III, Sachs, D.H. & Sykes, M. Specific tolerance induction across a xenogeneic barrier: Production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen. J. Exp. Med. 172, 195–202 (1990).

    Article  CAS  Google Scholar 

  42. Ildstad, S.T., Wren, S.M., Bluestone, J.A., Barbieri, S.A. & Sachs, D.H. Characterization of mixed allogeneic chimeras: Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J. Exp. Med. 162, 231–244 (1985).

    Article  CAS  Google Scholar 

  43. Ozato, K., Mayer, N. & Sachs, D.H. Hybridoma cell lines secreting monoclonal antibodies to mouse H–2 and Ia antigens. J. Immunol. 124, 533–540 (1980).

    CAS  PubMed  Google Scholar 

  44. Sachs, D.H., Mayer, N. & Ozato, K. Hybridoma antibodies directed toward murine H–2 and Ia antigens. in Monoclonal Antibodies and T Cell Hybridomas. (eds. Hammerling, G.J., Hammerling, U. & Kearney, J.F.) 95–101 (Elsevier/North-Holland Biomedical, New York, 1981).

    Google Scholar 

  45. Ozato, K. & Sachs, D.H. Monoclonal antibodies to mouse MHC antigens. III. Hybridoma antibodies reacting to antigens of the H–2b haplotype reveal genetic control of isotype expression. J. Immunol. 126, 317–321 (1981).

    CAS  PubMed  Google Scholar 

  46. Watanabe, M., Suzuki, T., Taniguchi, M. & Shinohara, N. Monoclonal anti-Ia murine alloantibodies crossreactive with the Ia-homologues of other mammalian species including humans. Transplantation 36, 712–718 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Swenson, K., Sergio, J. et al. Skin graft tolerance across a discordant xenogeneic barrier. Nat Med 2, 1211–1216 (1996). https://doi.org/10.1038/nm1196-1211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196-1211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing