Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue-specific consequences of the anti-adenoviral immune response: implications for cardiac transplants

Abstract

The immune response to adenoviral vectors can induce inflammation and loss of transgene expression in transfected tissues. This would limit the use of adenovirus-mediated gene transfer in disease states in which long-term gene expression is required. While studying the effect of the anti-adenoviral immune response in transplantation, we found that transgene expression persisted in cardiac isografts transfected with an adenovirus encoding β-galactosidase. Transfected grafts remained free of inflammation, despite the presence of an immune response to the vector. Thus, adenovirus-mediated gene transfer may have therapeutic value in cardiac transplantation and heart diseases. Furthermore, immunological limitations of adenoviral vectors for gene therapy are not universal for all tissue types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammation and transgene expression after transplant or intravenous delivery of Ad.
Figure 2: Transient splenic transgene expression in recipients of Ad.
Figure 3: Cellular immunity after cardiac transplant or intravenous delivery of Ad.
Figure 4: Antibody responses against adenovirus after cardiac transplant or intravenous delivery of Ad.
Figure 5: Tissue distribution influences inflammation and transgene expression after transplant or intravenous delivery of Ad.
Figure 6: Transgene expression in Ad.

Similar content being viewed by others

References

  1. Wilson, J.M. Adenoviruses as gene-delivery vehicles. N. Engl. J. Med. 334, 1185–1187 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Trapnell, B.C. & Gorziglia, M. Gene therapy using adenoviral vectors. Curr. Opin. Biotech. 5, 617– 625 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, Y., Li, Q., Ertl, H.C.J. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tripathy, S.K., Black, H.B., Goldwasser, E. & Leiden, J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nature Med. 2, 545–550 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, Y., Jooss, K.U., Su, Q., Ertl, H.C.J. & Wilson, J. M. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 3, 137– 144 (1996).

    PubMed  Google Scholar 

  7. Yang, Y. & Wilson, J. M. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J. Immunol. 155, 2564–2570 (1995).

    CAS  PubMed  Google Scholar 

  8. DeMatteo, R.P., Markmann, J.F., Kozarsky, K.F., Barker, C.F. & Raper, S.E. Prolongation of adenoviral transgene expression in mouse liver by T lymphocyte subset depletion. Gene Ther. 3, 4–12 ( 1996).

    CAS  PubMed  Google Scholar 

  9. Vilquin, J.-T. et al. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Human Gene Ther. 6, 1391–1401 ( 1995).

    Article  CAS  Google Scholar 

  10. Gao, X. & Huang, L. Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722 (1995).

    CAS  PubMed  Google Scholar 

  11. Crystal, R.G. The gene as the drug. Nature Med. 1, 15– 17 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Gunzburg, W. H., & Salmons, B. Development of retroviral vectors as safe, targeted gene delivery systems. J. Mol. Med. 74, 171–182 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  13. Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Bishop, D.K., Shelby, J. & Eichwald, E. J. Mobilization of T lymphocytes after cardiac transplantation: Evidence that CD4-positive cells are required for cytotoxic T lymphocyte activation, inflammatory enothelial development, graft infiltration, and acute allograft rejection. Transplantation 53, 849– 857 (1997).

    Article  Google Scholar 

  15. Merrick, A.F., Shewring, L.D., Sawyer, G.J., Gustafsson, K.T. & Fabre, J.W. Comparison of adenovirus gene transfer to vascular endothelial cells in cell culture, organ culture, and in vivo . Transplantation 62, 1085– 1089 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, J., Ma, Y. & Knechtle, S.J. Adenovirus-mediated gene transfer into rat cardiac allografts: Comparison of direct injection and perfusion. Transplantation 61, 1726–1729 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Shiraishi, M. et al. Adenovirus-mediated gene transfer using ex vivo perfusion of the heart graft. Surg. Today 26, 624– 628 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J. et al. Cardiac gene transfer by intracoronary infusion of adenovirus vector-mediated reporter gene in the transplanted mouse heart. J. Thorac. Cardiovasc. Surg. 111, 246–252 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  19. Drazan, K.E. et al. Hepatic function is preserved following liver-directed, adenovirus-mediated gene transfer. J. Surg. Res. 59, 299– 304 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Drazan, K.E. et al. Adenovirus-mediated gene transfer in the transplant setting: Early events after orthotopic transplantation of liver allografts expressing TGF-β1. Transplantation 62, 1080– 1084 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Shaked, A. et al. Adenovirus-mediated gene transfer in the transplant setting: II. Successful expression of transferred cDNA in syngeneic liver grafts. Transplantation 57, 1508–1511 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. DeMatteo, R.P. et al. Immunologic barriers to hepatic adenoviral gene therapy for transplantation: Cellular and humoral responses limit transgene expression in mouse liver. Transplantation 63, 315– 319 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. McCoy, R.D., Davidson, B.L., Roessler, B.J., Huffnagle, B.B. & Simon, R.H. Expression of human interleukin-1 receptor antagonist in mouse lungs using a recombinant adenovirus: Effects on vector-induced inflammation. Gene Ther. 2, 437–442 (1995).

    CAS  PubMed  Google Scholar 

  24. Qin, L. et al. Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum. Gene Ther. 8, 1365–1374 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Olthoff, K.M. et al. Adenovirus-mediated gene transfer into cold-preserved liver allografts: Survival pattern and unresponsiveness following transduction with CTLA4Ig. Nature Med. 4, 194– 200 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Austyn, J.M. et al. Isolation and characterization of dendritic cells from mouse heart and kidney. J. Immunol. 152, 2401– 2410 (1994).

    CAS  PubMed  Google Scholar 

  27. Larsen, C.P., Morris, P. J. & Austyn, J.M. Migration of dendritic leukocytes from cardiac allografts into host spleens: A novel pathway for initiation of rejection. J. Exp. Med. 171, 307–314 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96– 99 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Logan, J. & Shenk, T. Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc. Natl. Acad. Sci USA 81, 3655–3659 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ye, X. et al. Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J. Biol. Chem. 271, 3639–3646 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Corry, R.J., Winn, H.J. & Russell, P.S. Primarily vascularized allografts of hearts in mice: The role of H-2D, H-2K, and Non-H-2 antigens in rejection. Transplantation 16, 343–350 ( 1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Nabel and M. Imperiale for their comments regarding this manuscript. This work was supported by NIH grant R01 AI HL 31946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Keith Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, S., Li, K., Piccotti, J. et al. Tissue-specific consequences of the anti-adenoviral immune response: implications for cardiac transplants. Nat Med 5, 1143–1149 (1999). https://doi.org/10.1038/13467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing