Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective radiosensitization of p53–deficient cells by caffeine–mediated activation of p34cdc2 kinase

Abstract

The induction of tumor cell death by anticancer therapy results from a genetic program of autonomous cell death termed apoptosis. Because the p53 tumor suppressor gene is a critical component for induction of apoptosis in response to DNA damage, its inactivation in cancers may be responsible for their resistance to genotoxic anticancer agents. The cellular response to DNA damage involves a cell–cycle arrest at both the G1/S and G2/M transitions; these checkpoints maintain viability by preventing the replication or segregation of damaged DNA. The arrest at the G1 checkpoint is mediated by p53–dependent induction of p21WAFI/ClP1, whereas the G2 arrest involves inactivation of p34cdc2 kinase. Following DNA damage, p53–deficient cells fail to arrest at G1 and accumulate at the G2/M transition. We demonstrate that abrogation of G2 arrest by caffeine–mediated activation of p34cdc2 kinase results in the selective sensitization of p53–deficient primary and tumor cells to irradiation–induced apoptosis. These data suggest that pharmacologic activation of p34cdc2 kinase may be a useful therapeutic strategy for circumventing the resistance of p53–deficient cancers to genotoxic anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Fisher, D.E. Apoptosis in cancer therapy: Crossing the threshold. Cell 78, 539–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Lowe, S.W., Ruley, H.E., Jacks, T. & Housman, D. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Clark, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  Google Scholar 

  6. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Symonds, H. et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703–711 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Kinzler, K.W. & Vogelstein, B. Clinical implications of basic research: Cancer therapy meets p53. N. Engl. J. Med. 331, 49–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Dulic, V. et al. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013–1023 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V. & Kastan, M.B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89, 7491–7495 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, M.L. et al. Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266, 1376–1380 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503–507 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Nurse, P. Ordering S phase and M phase in the cell cycle. Cell 79, 547–550 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Hartwell, L.H. & Weinert, T.A. Controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Murray, A.W. Creative blocks: Cell-cycle checkpoints and feedback controls. Nature 359, 599–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Lotem, J. & Sachs, L. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82, 1092–1096 (1993).

    CAS  PubMed  Google Scholar 

  19. Hunter, T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 80, 225–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lock, R.B., Galperina, O.V., Feldhoff, R.C. & Rhodes, L.J. Concentration-dependent differences in the mechanisms by which caffeine potentiates etoposide cytotoxicity in HeLa cells. Cancer Res. 54, 4933–4939 (1994).

    CAS  PubMed  Google Scholar 

  21. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Harbour, J.W. et al. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241, 353–357 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Powell, S.N. et al. Differential sensitivity of p53(−/−) and p53(+/+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 55, 1643–1648 (1995).

    CAS  PubMed  Google Scholar 

  24. Russell, K.J. et al. Abrogation of the G2 checkpoint results in differential radiosensitization of G1 checkpoint-deficient and G1 checkpoint-competent cells. Cancer Res. 55, 1639–1642 (1995).

    CAS  PubMed  Google Scholar 

  25. Fan, S. et al. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 55, 1649–1654 (1995).

    CAS  PubMed  Google Scholar 

  26. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Bedi, A. et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition following DNA damage: A mechanism of resistance to multiple anticancer agents. Blood 86, 1148–1158 (1995).

    CAS  PubMed  Google Scholar 

  28. Th'ng, J.P.H. et al. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63, 313–324 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Kharbanda, S. et al. Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer Res. 54, 1412–1414 (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, SL., Akhtar, A., Mckenna, K. et al. Selective radiosensitization of p53–deficient cells by caffeine–mediated activation of p34cdc2 kinase. Nat Med 2, 1140–1143 (1996). https://doi.org/10.1038/nm1096-1140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1096-1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing