Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Specific immunotherapy: One size does not fit all

Two clinical trials testing an altered peptide ligand (APL) in multiple sclerosis report seemingly contradictory results. Immunologic analysis shows that the biological effects of APLs extend far beyond what was initially envisioned, raising important issues for the development of this type of therapy (pages 1167–1175 & 1176–1182).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological effects of APLs.

References

  1. Zamvil, S.S. & Steinman, L. The T-lymphocyte in experimental allergic encephalomyelitis. Ann. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  2. Wraith, D., McDevitt, H., Steinman, L. & Acha-Orbea, H. T cell recognition as the target for immune intervention in autoimmune disease . Cell 57, 709–715 (1989).

    Article  CAS  Google Scholar 

  3. Nicholson, L. & Kuchroo, V. T cell recognition of self and altered self antigens. Crit. Rev. Immunol. 17, 449–462 (1997).

    CAS  PubMed  Google Scholar 

  4. Kappos, L., et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Med. 6 1176–1182 ( 2000).

    Article  CAS  Google Scholar 

  5. Bielekova, B., et al. Encephalitogenic potential of myelin basic protein peptide (amino acid 83-99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6 1167–1175 (2000).

    Article  CAS  Google Scholar 

  6. Zinkernagel, R.M. & Doherty, P.C. The discovery of MHC restriction. Immunol. Today 18, 14 –17 (1997).

    Article  CAS  Google Scholar 

  7. Townsend, A., et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959–968 ( 1986).

    Article  CAS  Google Scholar 

  8. Sloan-Lancaster, J. & Allen, P. Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu. Rev. Immunol. 14, 1–27 (1996).

    Article  CAS  Google Scholar 

  9. Windhagen, A., et al. Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 2, 373–380 ( 1995).

    Article  CAS  Google Scholar 

  10. Steinman, L. A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc. Natl. Acad. Sci. USA 93, 2253– 2256 (1996).

    Article  CAS  Google Scholar 

  11. Nicholson, L., Murtaza, A., Hafler, B., Sette, A. & Kuchroo, V. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc. Natl. Acad. Sci. USA 94, 9279–9284 (1997).

    Article  CAS  Google Scholar 

  12. Martin, R., McFarland, H.F. & McFarlin, D.E. Immunological aspects of demyelinating diseases. Ann. Rev. Immunol. 10, 153–187 (1992).

    Article  CAS  Google Scholar 

  13. Luchinetti, C., Bruck, W., Rodriguez, M. & Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol. 6, 259– 274 (1996).

    Article  Google Scholar 

  14. Genain, C., Cannella, B., Hauser, S. & Raine, C. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Med. 5, 170– 175 (1999).

    Article  CAS  Google Scholar 

  15. Genain, C.P., et al. Late complications of immune deviation therapy in a non human primate. Science 274, 2054– 2057 (1996).

    Article  CAS  Google Scholar 

  16. Wucherpfennig, K.W. & Strominger, J.L. Molecular mimicry in T cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  Google Scholar 

  17. Gran, B., Hemmer, B., Vergelli, M., McFarland, H. & Martin, R. Molecular mimicry and multiple sclerosis: degenerate T-cell recognition and the induction of autoimmunity . Ann. Neurol. 45, 559– 567 (1999).

    Article  CAS  Google Scholar 

  18. Madrenas, J. & Germain, R. Variant TCR ligands: new insights into the molecular basis of antigen-dependent signal transduction and T cell activation. Semin. Immunol. 8, 83–106 (1996).

    Article  CAS  Google Scholar 

  19. Ausubel, L., Kwan, C., Sette, A., Kuchroo, V. & Hafler, D. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc. Natl. Acad. Sci. USA 93, 15317– 15322 (1996).

    Article  CAS  Google Scholar 

  20. Tuohy, V., et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev. 164 93–100 ( 1998).

    Article  CAS  Google Scholar 

  21. Aharoni, R., Teitelbaum, D., Arnon, R. & Sela, M. Copolymer 1 acts against the immunodominant epitope 82–100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc. Natl. Acad. Sci. USA 96, 634–639 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genain, C., Zamvil, S. Specific immunotherapy: One size does not fit all. Nat Med 6, 1098–1100 (2000). https://doi.org/10.1038/80424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/80424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing