Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to the Editor
  • Published:

Mathematical models of HIV pathogenesis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Grossman, Z. & Herberman, R.B. HIV homeostasis in HIV infection is neither failing nor blind: Modified Cell counts reflect an adaptive response. Nature Med. 3, 486–490 (1997).

    Article  CAS  Google Scholar 

  2. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126. (1995)

    Article  CAS  Google Scholar 

  3. Margolick, J.B. et al. Failure of T-Cell homeostasis pre-ceding AIDS in HIV-1 infection. Nature Med. 1, 674–680. (1995).

    Article  CAS  Google Scholar 

  4. Anderson, R.W., Ascher, M.S. & Sheppard, H.W. Direct HIV cytopathicity cannot account for CD4 decline in the presence of homeostasis. A worst-case dynamical analysis. J. AIDS Human Retroviruses (in the press).

  5. Nowak, M.A. et al. Antigenic diversity thresholds and the development of AIDS. Science, 254, 963–969 (1991).

    Article  CAS  Google Scholar 

  6. Delwart, E.L., Sheppard, H.W., Walker, B.D., Goudsmit, J. & Mullins, J.I. Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays. J. Virology 68, 6672–6683 (1994).

    CAS  PubMed  Google Scholar 

  7. Wolinsky, S.M. et al. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science, 272, 537–542 (1996).

    Article  CAS  Google Scholar 

  8. Finkel, T.H. et al. Apoptosis occurs predominantly in bystander Cells and not in productively infected Cells of HIV-and SIV-infected lymph nodes. Nature Med. 1, 129–134 (1995).

    Article  CAS  Google Scholar 

  9. Grossman, Z., Bentwich, Z. & Heberman, R.B. From infection to AIDS: are manifestations of immune resistance to HIV infection misinterpreted? Clin. Immunol. Immunopathol. 69, 123–135 (1993).

    Article  CAS  Google Scholar 

  10. Rosok, B.J. et al. Reduced CD4 Cell counts in blood do not reflect CD4 Cell depletion in tonsillar tissue in asymptomatic HIV-1 infection. AIDS 10, F35–F38 (1996).

    CAS  PubMed  Google Scholar 

  11. Autran, B. et al. Positive effects of combined antiretro-viral therapy on CDY+ T Cell homeostasis. Science 277, 112–116 (1997).

    Article  CAS  Google Scholar 

  12. Maddox, J. Duesberg and the new view of HIV. Nature 373, 189 (1995).

    Article  CAS  Google Scholar 

  13. Haase, A.T. et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274, 985–989 (1996).

    Article  CAS  Google Scholar 

  14. Chun, T.-W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, Z., Herberman, R. Mathematical models of HIV pathogenesis. Nat Med 3, 936–937 (1997). https://doi.org/10.1038/nm0997-936b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0997-936b

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing