Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of leptin on Lep expression is tissue-specific and nutritionally regulated

Abstract

Leptin, the product of the Obese (Lep) gene, orchestrates behavioral and metabolic responses to nutrient intake. Here, we demonstrate tissue-specific autoregulation of Lep. Moderate increases in circulating leptin considerably decreased Lep expression in adipose tissue and induced lep expression in skeletal muscle, a tissue that normally does not express this gene. Changes in nutrient availability resulted in rapid alterations in Lep autoregulation. These findings demonstrate negative feedback regulation of Lep in fat, and indicate that leptin secretion can function as a vehicle of 'cross-talk' between adipose tissue and skeletal muscle, leading to tissue-specific modulation of the 'leptin signal'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of leptin on the abundance of adipose tissue Lep mRNA.
Figure 2: The effect of leptin and nutritional status on the abundance of skeletal muscle Lep mRNA.
Figure 3: Leptin in situ hybridization in skeletal muscle.
Figure 4: Effect of peripheral leptin infusions on Lep mRNA.

Similar content being viewed by others

References

  1. Coleman, D.L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    Article  CAS  Google Scholar 

  2. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 42–32 (1994).

    Article  Google Scholar 

  3. Wang, J., Liu, R., Hawkins, M., Barzilai, N. & Rossetti, L. A nutrient sensing pathway regulates leptin gene expression in muscle and fat. Nature 393, 684–688 (1998).

    Article  CAS  Google Scholar 

  4. Bado, A. et al. The stomach is a source of leptin. Nature 394, 790–793 (1998).

    Article  CAS  Google Scholar 

  5. Masuzaki, H. et al. Nonadipose tissue production of leptin as a novel placenta-derived hormone in humans. Nature Med. 3, 1029–1033 (1997).

    Article  CAS  Google Scholar 

  6. Campfield, L., Smith, F.J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  Google Scholar 

  7. Frederich, R.C. et al. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med. 1, 1311–1314 (1995).

    Article  CAS  Google Scholar 

  8. Flier, J.S. Leptin expression and action: New experimental paradigms. Proc. Natl. Acad. Sci. USA 94, 4242–4245 (1997).

    Article  CAS  Google Scholar 

  9. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  Google Scholar 

  10. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  Google Scholar 

  11. Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P. & Baskin, D.G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    Article  CAS  Google Scholar 

  12. Caro, J.F., Sinha, M.K., Kolaczynski, W., Zhang, P.L. & Considine, R.V. Leptin: the tale of an obesity gene. Diabetes 45, 1455–1462 (1996).

    Article  CAS  Google Scholar 

  13. Ravussin, E. et al. Relatively low plasma leptin concentrations precede weight gain in Pima Indians. Nature Med. 3, 238–240 (1997).

    Article  CAS  Google Scholar 

  14. Carpenter, L.R. et al. Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with ob receptor. Proc. Natl. Acad. Sci. USA 95, 6061–6066 (1998).

    Article  CAS  Google Scholar 

  15. Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  CAS  Google Scholar 

  16. Boston, B.A., Blaydon, K.M., Varnerin, J. & Cone R.D. Independent and additive effects of central POMC and leptin pathways on murine obesisty. Science 278, 1641–1644 (1997).

    Article  CAS  Google Scholar 

  17. Chua, S.C.J. et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).

    Article  CAS  Google Scholar 

  18. Considine, R.V., Considine, E.L., Williams, C.J., Hyde, T.M. & Caro, J.F. The hypothalamic leptin receptor in humans: identification of incidental sequence polymorphisms and absence of the db/db mouse and fa/fa rat mutations. Diabetes 45, 992–994 (1996).

    Article  Google Scholar 

  19. Jacob, R.J. et al. The effect of leptin is enhanced by microinjection into the ventromedial hypothalamus. Diabetes 46,150–152 (1997).

    Article  CAS  Google Scholar 

  20. Bai, Y., Zhang, S., Kim, K.-S., Lee, J.-K. & Kim, K.-H. Leptin inhibits acetyl-CoA carboxylase in 3T3 pre-adipocytes. J. Biol. Chem. 271, 13939–13942 (1996).

    Article  CAS  Google Scholar 

  21. Lord, G.M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    Article  CAS  Google Scholar 

  22. Muoio, D.M., Dohn, G.L., Fiedorek, F.T., Tapscott, E.B. & Coleman, R.A. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46, 1360–1363 (1997).

    Article  CAS  Google Scholar 

  23. Shimabukuro, M. et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc. Natl. Acad. Sci. USA 94, 4637–4641 (1997).

    Article  CAS  Google Scholar 

  24. Sierra-Honigmann, M.R. et al. Biological action of leptin as an angiogenic factor. Science 281, 1683–1686 (1998).

    Article  CAS  Google Scholar 

  25. Kellerer, M. et al. Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40, 1358–1362 (1997).

    Article  CAS  Google Scholar 

  26. Liu, L. et al. Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J. Biol. Chem. 273, 31160–31167 (1998).

    Article  CAS  Google Scholar 

  27. Rossetti, L., Smith, D., Shulman, G.I., Papachristou, D. & DeFronzo, R.A. Corection of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Invest. 79, 1510–1515 (1987).

    Article  CAS  Google Scholar 

  28. Rossetti, L. et al. Short-term effects of leptin on hepatic gluconeogenesis and in vivo insulin action. J. Biol. Chem. 27758–27763 (1997).

  29. Tartaglia, L. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. The leptin receptor mediates apparent autocrine regulation of leptin gene expression. Biochem. Biophys. Res. Comm. 240, 492–495 (1997).

    Article  CAS  Google Scholar 

  31. Saladin, R. et al. Transient increase in obese gene expression after food intake or insulin administration. Nature 377, 527–529 (1995).

    Article  CAS  Google Scholar 

  32. Gong, D.-W., He, Y., Karas, M. & Reitman, M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, b3-adrenergic agonists, and leptin. J. Biol. Chem. 272, 24129–24132 (1997).

    Article  CAS  Google Scholar 

  33. Kim, Y.-B., Uotani, S., Flier, J.S. & Kahn, B.B. In vivo administration of leptin rapidly activates phosphoinositide-3-kinase in insulin sensitive tissues. Diabetes 47, A317 (1998).

    Google Scholar 

  34. Schwartz, M.W., Peskind, E., Raskind, M., Boyko, E.J. & Porte, D.J. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nature Med. 2, 589–593 (1996).

    Article  CAS  Google Scholar 

  35. Seeley, R.J. et al. Intraventricular leptin reduces food intake and body weight of lean rats but not obese Zucker rats. Horm. Metab. Res. 28, 664–668 (1996).

    Article  CAS  Google Scholar 

  36. Considine, R.V. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 324–325 (1996).

    Article  Google Scholar 

  37. Boden, G., Chen, X., Mozzoli, M. & Ryan, I. Effect of fasting on serum leptin in normal human subjects. J. Clin. Endocrinol. Metab. 81, 3419–3423 (1996).

    CAS  PubMed  Google Scholar 

  38. Kolaczynski, J.W. et al. Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves. Diabetes 45, 1511–1515 (1996).

    Article  CAS  Google Scholar 

  39. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    Article  CAS  Google Scholar 

  40. Schwartz, M.W. et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45, 531–535 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to L.R. from the National Institutes of Health (DK 48321 and DK 45024) and the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Rossetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Liu, R., Liu, L. et al. The effect of leptin on Lep expression is tissue-specific and nutritionally regulated. Nat Med 5, 895–899 (1999). https://doi.org/10.1038/11335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing